Home
Class 12
MATHS
In any triangle ABC, if ( sin A + sin B ...

In any triangle ABC, if `( sin A + sin B + sin C ) ( sin A + sin B - sin C ) = 3 sin A sin B`, then

A

`A= 60^(@)`

B

`B = 60^(@)`

C

`C = 60^(@)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ (\sin A + \sin B + \sin C)(\sin A + \sin B - \sin C) = 3 \sin A \sin B \] ### Step 1: Rewrite Sine in Terms of Sides and Circumradius Using the Law of Sines, we know that: \[ \frac{A}{\sin A} = \frac{B}{\sin B} = \frac{C}{\sin C} = 2R \] From this, we can express the sine values as: \[ \sin A = \frac{A}{2R}, \quad \sin B = \frac{B}{2R}, \quad \sin C = \frac{C}{2R} \] ### Step 2: Substitute Sine Values into the Equation Substituting these expressions into the original equation gives us: \[ \left(\frac{A}{2R} + \frac{B}{2R} + \frac{C}{2R}\right)\left(\frac{A}{2R} + \frac{B}{2R} - \frac{C}{2R}\right) = 3 \left(\frac{A}{2R}\right)\left(\frac{B}{2R}\right) \] This simplifies to: \[ \frac{(A + B + C)(A + B - C)}{(2R)^2} = \frac{3AB}{(2R)^2} \] ### Step 3: Cancel Common Terms Since \( (2R)^2 \) is common on both sides, we can cancel it out: \[ (A + B + C)(A + B - C) = 3AB \] ### Step 4: Expand the Left Side Now, we expand the left side: \[ A^2 + B^2 + AB + A + B - AC - BC = 3AB \] Rearranging gives: \[ A^2 + B^2 - C^2 + 2AB = 3AB \] ### Step 5: Rearrange the Equation This leads to: \[ A^2 + B^2 - C^2 = AB \] ### Step 6: Use the Cosine Rule Using the cosine rule, we know: \[ C^2 = A^2 + B^2 - 2AB \cos C \] Substituting this into our equation gives: \[ A^2 + B^2 - (A^2 + B^2 - 2AB \cos C) = AB \] This simplifies to: \[ 2AB \cos C = AB \] ### Step 7: Solve for Cosine Dividing both sides by \( AB \) (assuming \( AB \neq 0 \)) gives: \[ 2 \cos C = 1 \implies \cos C = \frac{1}{2} \] ### Step 8: Determine the Angle The angle \( C \) that satisfies \( \cos C = \frac{1}{2} \) is: \[ C = 60^\circ \] ### Conclusion Thus, the angle \( C \) in triangle \( ABC \) is \( 60^\circ \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) TRUE AND FALSE|8 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) FILL IN THE BLANKS|1 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Rr (sin A + sin B + sin C) = Delta

In a triangle ABC, the value of sin A+sin B+sin C is

In a triangle ABC, prove b sin B-c sin C=a sin(B-C)

If in a triangle ABC,4sin A = 4 sin B=3 sin C, then cos C=

In triangle ABC,(sin A+sin B+sin C)/(sin A+sin B-sin C) is equal to

"In triangle ABC " "c(sin^(2)A+sin^(2)B)=sin C(a sin A+b sin B)

In any Delta ABC, sum a(sin B - sin C) =

In triangle ABC, (b-c)sin A+(c-a) sin B+( a-b) sin C=

In any DeltaABC , sin A + sin B + sin C =

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)
  1. If alpha + beta + gamma, pi, then the value of sin ^(2) alpha + sin ^...

    Text Solution

    |

  2. If alpha+beta+gamma=2pi, prove that : cos^2 alpha + cos^2 beta + cos^2...

    Text Solution

    |

  3. In any triangle ABC, if ( sin A + sin B + sin C ) ( sin A + sin B - si...

    Text Solution

    |

  4. If A,B,C are the angles of a triangle, then sin^(2) A + sin^(2) B + si...

    Text Solution

    |

  5. cos^(2) A + cos^(2) B + cos^(2) C =

    Text Solution

    |

  6. sin^(2) A + sin ^(2) B +sin^(2) C =

    Text Solution

    |

  7. If A+B+C=pi , prove that : sin^2, A/2 + sin^2, B/2 -sin^2, C/2 =1-2 co...

    Text Solution

    |

  8. If : cos^(2) A + cos^(2) B + cos^(2) C = 1, "then" : Delta ABC is

    Text Solution

    |

  9. In a !ABC if sin A cos B = 1/4 and 3 tan A = B , then the triangle is

    Text Solution

    |

  10. If any /\ABC, tanA+tanB+tanC=6 and tanAtanB=2, then the values of tanA...

    Text Solution

    |

  11. If in a triangle ABC, tan A + tan B + tanC has the value 6, then the v...

    Text Solution

    |

  12. In a triangle ABC if tanA: tan B : tan C = 3:4:5 then the value of sin...

    Text Solution

    |

  13. If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

    Text Solution

    |

  14. If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC =...

    Text Solution

    |

  15. In a DeltaABC, "the value of"cot""(A)/(2)cot""(B)/(2)cos""(C)/(2)is

    Text Solution

    |

  16. " If alpha=(2 pi)/(7) ,then the value of tan alpha tan2 alpha+tan2 alp...

    Text Solution

    |

  17. If x+y+z=pi //2, then tan y tan z + tan z tan x + tan x tan y =

    Text Solution

    |

  18. If x+y+z =pi //2, then cot x +cot y +cot z=

    Text Solution

    |

  19. In a triangle ABC, sum cot A cot B=

    Text Solution

    |

  20. If A,B,C be the angles of a triangle, then sum (cot A + cot B)/( tan A...

    Text Solution

    |