Home
Class 12
MATHS
In a triangle ABC if tanA: tan B : tan C...

In a triangle ABC if `tanA: tan B : tan C = 3:4:5` then the value of sin A sin B sin C is

A

`( 2)/( sqrt( 5))`

B

`( 2 sqrt( 5))/( 3)`

C

`( 2sqrt( 5))/( 9)`

D

`( 2)/( 3 sqrt( 5))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratio of the tangents of angles A, B, and C in triangle ABC: \[ \tan A : \tan B : \tan C = 3 : 4 : 5 \] ### Step 1: Assign Variables Let: \[ \tan A = 3k, \quad \tan B = 4k, \quad \tan C = 5k \] ### Step 2: Use the Identity for Tangents in a Triangle In any triangle, the sum of the angles is \(A + B + C = \pi\). Using the tangent addition formula, we can express the sum of the tangents: \[ \tan A + \tan B + \tan C = \tan(A + B + C) = \tan(\pi) = 0 \] Thus, we have: \[ 3k + 4k + 5k = 0 \] This does not directly help us, so we will use the product of tangents instead. ### Step 3: Find the Value of \(k\) Using the identity for the product of tangents in a triangle: \[ \tan A \tan B \tan C = \tan A + \tan B + \tan C \] Substituting our expressions: \[ (3k)(4k)(5k) = 3k + 4k + 5k \] This simplifies to: \[ 60k^3 = 12k \] Dividing both sides by \(k\) (assuming \(k \neq 0\)): \[ 60k^2 = 12 \] Thus, we find: \[ k^2 = \frac{12}{60} = \frac{1}{5} \quad \Rightarrow \quad k = \frac{1}{\sqrt{5}} \] ### Step 4: Calculate \(\tan A\), \(\tan B\), and \(\tan C\) Now substituting \(k\) back into our expressions for \(\tan A\), \(\tan B\), and \(\tan C\): \[ \tan A = 3k = \frac{3}{\sqrt{5}}, \quad \tan B = 4k = \frac{4}{\sqrt{5}}, \quad \tan C = 5k = \frac{5}{\sqrt{5}} \] ### Step 5: Find Sine Values Using the relationship \(\sin A = \frac{\tan A}{\sqrt{1+\tan^2 A}}\): \[ \sin A = \frac{\frac{3}{\sqrt{5}}}{\sqrt{1 + \left(\frac{3}{\sqrt{5}}\right)^2}} = \frac{\frac{3}{\sqrt{5}}}{\sqrt{1 + \frac{9}{5}}} = \frac{\frac{3}{\sqrt{5}}}{\sqrt{\frac{14}{5}}} = \frac{3}{\sqrt{14}} \] Similarly, for \(\sin B\) and \(\sin C\): \[ \sin B = \frac{\frac{4}{\sqrt{5}}}{\sqrt{1 + \left(\frac{4}{\sqrt{5}}\right)^2}} = \frac{4}{\sqrt{21}} \] \[ \sin C = \frac{\frac{5}{\sqrt{5}}}{\sqrt{1 + \left(\frac{5}{\sqrt{5}}\right)^2}} = \frac{5}{\sqrt{30}} \] ### Step 6: Calculate \( \sin A \sin B \sin C \) Now we calculate the product: \[ \sin A \sin B \sin C = \left(\frac{3}{\sqrt{14}}\right) \left(\frac{4}{\sqrt{21}}\right) \left(\frac{5}{\sqrt{30}}\right) \] Calculating the numerator: \[ 3 \times 4 \times 5 = 60 \] Calculating the denominator: \[ \sqrt{14} \times \sqrt{21} \times \sqrt{30} = \sqrt{14 \times 21 \times 30} \] Calculating \(14 \times 21 = 294\) and \(294 \times 30 = 8820\): \[ \sin A \sin B \sin C = \frac{60}{\sqrt{8820}} \] ### Step 7: Simplify Now we simplify \(\sqrt{8820}\): \[ 8820 = 2 \times 3^2 \times 7 \times 5 \times 14 \] Thus: \[ \sqrt{8820} = 2 \times 3 \times \sqrt{70} = 6\sqrt{70} \] Finally: \[ \sin A \sin B \sin C = \frac{60}{6\sqrt{70}} = \frac{10}{\sqrt{70}} = \frac{10\sqrt{70}}{70} = \frac{\sqrt{70}}{7} \] ### Final Answer Thus, the value of \(\sin A \sin B \sin C\) is: \[ \frac{2\sqrt{5}}{7} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) TRUE AND FALSE|8 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) FILL IN THE BLANKS|1 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

In a delta ABC, if tan A:tan B:tan C=3:4:5 then the value of sin A:sin B:sin C is equal to

In a ABC, if tan A:tan B:tan C=3:4:5 then the value of sin A sin B sin C is equal to (a) (2)/(sqrt(5)) (b) (2sqrt(5))/(7)(2sqrt(5))/(9) (d) (2)/(3sqrt(5))

In a triangle ABC, the value of sin A+sin B+sin C is

In triangle ABC if a=8,b=9 and c=10 then the value of (tan C)/(sin B) is

In Delta ABC,a=3,b=4 and c=5, then value of sin A+sin2B+sin3C is

In Delta ABC if a:b:c=3:4:5 then sin A:sin B:sin C is

In triangle ABC, right-angled at B. if tan A = 1/sqrt(3) ,find the value of: sin A cos C+cos A sin C

If in a triangle ABC,3sin A=6sin B=2sqrt(3)sin C then the value of /_A=

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)
  1. If : cos^(2) A + cos^(2) B + cos^(2) C = 1, "then" : Delta ABC is

    Text Solution

    |

  2. In a !ABC if sin A cos B = 1/4 and 3 tan A = B , then the triangle is

    Text Solution

    |

  3. If any /\ABC, tanA+tanB+tanC=6 and tanAtanB=2, then the values of tanA...

    Text Solution

    |

  4. If in a triangle ABC, tan A + tan B + tanC has the value 6, then the v...

    Text Solution

    |

  5. In a triangle ABC if tanA: tan B : tan C = 3:4:5 then the value of sin...

    Text Solution

    |

  6. If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

    Text Solution

    |

  7. If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC =...

    Text Solution

    |

  8. In a DeltaABC, "the value of"cot""(A)/(2)cot""(B)/(2)cos""(C)/(2)is

    Text Solution

    |

  9. " If alpha=(2 pi)/(7) ,then the value of tan alpha tan2 alpha+tan2 alp...

    Text Solution

    |

  10. If x+y+z=pi //2, then tan y tan z + tan z tan x + tan x tan y =

    Text Solution

    |

  11. If x+y+z =pi //2, then cot x +cot y +cot z=

    Text Solution

    |

  12. In a triangle ABC, sum cot A cot B=

    Text Solution

    |

  13. If A,B,C be the angles of a triangle, then sum (cot A + cot B)/( tan A...

    Text Solution

    |

  14. Consider a triangle ABC such that cotA+cotB+cotC=cot theta. Now answe...

    Text Solution

    |

  15. In a triangle ABC, if cot A + cot B + cotC =cot theta , then ( si...

    Text Solution

    |

  16. In a triangle ABC, if cot A + cot B + cotC =cot theta , then The ...

    Text Solution

    |

  17. If Sigmaxy =1 , then Sigma (x+y)/( 1-xy)=

    Text Solution

    |

  18. In a triangle ABC, if the angles are in the ratio 1:2:4, then ( sum se...

    Text Solution

    |

  19. tan A, tan B , tan C are the roots of the cubic equation x^(3) - 7x^(2...

    Text Solution

    |

  20. In a triangle if sin A sin B sin C =p and cos A cos B cos C =q then ta...

    Text Solution

    |