Home
Class 12
MATHS
If A,B,C be the angles of a triangle, th...

If A,B,C be the angles of a triangle, then `sum (cot A + cot B)/( tan A + tan B ) =`

A

1

B

`-1`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \sum \frac{\cot A + \cot B}{\tan A + \tan B} \] where \(A\), \(B\), and \(C\) are the angles of a triangle. We know that the sum of the angles in a triangle is \(180^\circ\), i.e., \(A + B + C = 180^\circ\). ### Step 1: Use the identity for cotangent and tangent We can express cotangent and tangent in terms of sine and cosine: \[ \cot A = \frac{\cos A}{\sin A}, \quad \tan A = \frac{\sin A}{\cos A} \] Thus, we can rewrite the expression: \[ \frac{\cot A + \cot B}{\tan A + \tan B} = \frac{\frac{\cos A}{\sin A} + \frac{\cos B}{\sin B}}{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}} \] ### Step 2: Simplify the numerator and denominator The numerator becomes: \[ \frac{\cos A \sin B + \cos B \sin A}{\sin A \sin B} \] And the denominator becomes: \[ \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B} \] ### Step 3: Combine the fractions Now we can combine the fractions: \[ \frac{\frac{\cos A \sin B + \cos B \sin A}{\sin A \sin B}}{\frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}} = \frac{(\cos A \sin B + \cos B \sin A) \cdot \cos A \cos B}{(\sin A \sin B)(\sin A \cos B + \sin B \cos A)} \] ### Step 4: Recognize the angle sum identities The numerator can be recognized as: \[ \cos A \sin B + \cos B \sin A = \sin(A + B) \] And the denominator can be simplified using the identity \(A + B + C = 180^\circ\) (thus \(A + B = 180^\circ - C\)): \[ \sin A \cos B + \sin B \cos A = \sin(A + B) = \sin(180^\circ - C) = \sin C \] ### Step 5: Final expression Thus, we can rewrite our expression as: \[ \frac{\sin C \cdot \cos A \cos B}{\sin A \sin B \cdot \sin C} \] Cancelling \(\sin C\) from the numerator and denominator (assuming \(C \neq 0\)) gives us: \[ \frac{\cos A \cos B}{\sin A \sin B} \] ### Step 6: Final result This can be further simplified to: \[ \frac{1}{\tan A \tan B} \] Thus, the final answer is: \[ \sum \frac{\cot A + \cot B}{\tan A + \tan B} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) TRUE AND FALSE|8 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) FILL IN THE BLANKS|1 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Prove that in a triangle ABC , sum (cot B+ cotC)/(tan B + tan C) =1 .

if A+B+C=180^(@) then sum((cot A+cot B)/(tan A+tan B))

If A,B,C,D are the angles of quadrilateral, then find (sum tan A)/(sum cot A).

If A,B,C,D are the angles of a quadrilateral, then (tan A+tan B+tan C+tan D)/(cot A+cot B+cot C+cot D) is equal to: (a) tan A tan B tan C tan D(b)tan^(2)A+tan^(2)B+tan^(2)C+tan^(2)D(d)sum tan A tan B tan C

If A,B,C, are the angles of a triangle such that cot(A/2)=3tan(C/2), then sinA ,sinB ,sinC are in (a)AdotPdot (b) GdotPdot (c) HdotPdot (d) none of these

(cot A+tan B)/(cot B+tan A)=cot A tan B

If A,B ,C are the angle of Delta ABC then cot A .cot B + cot B . "" cot C + cot C.cot A =

Prove: (tan A+tan B)/(cot A+cot B)=tan A tan B

In a triangle ABC,if a cot A+b cot B+c cot C=

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)
  1. If : cos^(2) A + cos^(2) B + cos^(2) C = 1, "then" : Delta ABC is

    Text Solution

    |

  2. In a !ABC if sin A cos B = 1/4 and 3 tan A = B , then the triangle is

    Text Solution

    |

  3. If any /\ABC, tanA+tanB+tanC=6 and tanAtanB=2, then the values of tanA...

    Text Solution

    |

  4. If in a triangle ABC, tan A + tan B + tanC has the value 6, then the v...

    Text Solution

    |

  5. In a triangle ABC if tanA: tan B : tan C = 3:4:5 then the value of sin...

    Text Solution

    |

  6. If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

    Text Solution

    |

  7. If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC =...

    Text Solution

    |

  8. In a DeltaABC, "the value of"cot""(A)/(2)cot""(B)/(2)cos""(C)/(2)is

    Text Solution

    |

  9. " If alpha=(2 pi)/(7) ,then the value of tan alpha tan2 alpha+tan2 alp...

    Text Solution

    |

  10. If x+y+z=pi //2, then tan y tan z + tan z tan x + tan x tan y =

    Text Solution

    |

  11. If x+y+z =pi //2, then cot x +cot y +cot z=

    Text Solution

    |

  12. In a triangle ABC, sum cot A cot B=

    Text Solution

    |

  13. If A,B,C be the angles of a triangle, then sum (cot A + cot B)/( tan A...

    Text Solution

    |

  14. Consider a triangle ABC such that cotA+cotB+cotC=cot theta. Now answe...

    Text Solution

    |

  15. In a triangle ABC, if cot A + cot B + cotC =cot theta , then ( si...

    Text Solution

    |

  16. In a triangle ABC, if cot A + cot B + cotC =cot theta , then The ...

    Text Solution

    |

  17. If Sigmaxy =1 , then Sigma (x+y)/( 1-xy)=

    Text Solution

    |

  18. In a triangle ABC, if the angles are in the ratio 1:2:4, then ( sum se...

    Text Solution

    |

  19. tan A, tan B , tan C are the roots of the cubic equation x^(3) - 7x^(2...

    Text Solution

    |

  20. In a triangle if sin A sin B sin C =p and cos A cos B cos C =q then ta...

    Text Solution

    |