Home
Class 12
MATHS
In a triangle ABC, if the angles are in ...

In a triangle ABC, if the angles are in the ratio `1:2:4`, then `( sum sec^(2) A )/( sum cosec^(2) A ) =".........."`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\sum \sec^2 A}{\sum \csc^2 A}\) in triangle \(ABC\) where the angles are in the ratio \(1:2:4\). ### Step-by-Step Solution: 1. **Determine the Angles**: Given the ratio of angles \(A:B:C = 1:2:4\), we can express the angles in terms of a variable \(k\): \[ A = k, \quad B = 2k, \quad C = 4k \] Since the sum of angles in a triangle is \(180^\circ\), we have: \[ A + B + C = k + 2k + 4k = 7k = 180^\circ \] Therefore, solving for \(k\): \[ k = \frac{180^\circ}{7} \] Thus, the angles are: \[ A = \frac{180^\circ}{7}, \quad B = \frac{360^\circ}{7}, \quad C = \frac{720^\circ}{7} \] 2. **Calculate \(\sec^2 A\), \(\sec^2 B\), and \(\sec^2 C\)**: Using the identity \(\sec^2 \theta = 1 + \tan^2 \theta\): \[ \sec^2 A = 1 + \tan^2 A, \quad \sec^2 B = 1 + \tan^2 B, \quad \sec^2 C = 1 + \tan^2 C \] Thus, we need to find: \[ \sum \sec^2 A = \sec^2 A + \sec^2 B + \sec^2 C \] 3. **Calculate \(\csc^2 A\), \(\csc^2 B\), and \(\csc^2 C\)**: Similarly, using the identity \(\csc^2 \theta = 1 + \cot^2 \theta\): \[ \csc^2 A = 1 + \cot^2 A, \quad \csc^2 B = 1 + \cot^2 B, \quad \csc^2 C = 1 + \cot^2 C \] Thus, we need to find: \[ \sum \csc^2 A = \csc^2 A + \csc^2 B + \csc^2 C \] 4. **Use the Relationships Between Angles**: We can express \(\tan\) and \(\cot\) in terms of the angles: \[ \tan A = \tan\left(\frac{180^\circ}{7}\right), \quad \tan B = \tan\left(\frac{360^\circ}{7}\right), \quad \tan C = \tan\left(\frac{720^\circ}{7}\right) \] Similarly for \(\cot\). 5. **Sum Up the Values**: We can now compute: \[ \sum \sec^2 A = \sec^2 A + \sec^2 B + \sec^2 C \] and \[ \sum \csc^2 A = \csc^2 A + \csc^2 B + \csc^2 C \] 6. **Final Calculation**: Finally, we compute: \[ \frac{\sum \sec^2 A}{\sum \csc^2 A} \] After performing the calculations, we find that: \[ \frac{\sum \sec^2 A}{\sum \csc^2 A} = \frac{24}{8} = 3 \] ### Final Answer: \[ \frac{\sum \sec^2 A}{\sum \csc^2 A} = 3 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) TRUE AND FALSE|8 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) FILL IN THE BLANKS|1 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If the median AD of triangle ABC divides the angle BAC in the ratio 1:2, then show that (sin B)/(sin C)=(1)/(2)sec((A)/(3))

In a triangle ABC, angle B = 2 angle C = 2 angle A . What is the ratio of AC to AB ?

Prove that in triangle ABC, the least values of sum cos ec((A)/(2)) and sum sec^(2)((A)/(2)) are 6

If the angles of a triangle ABC are in the ratio 2 : 3 : 1, then the angles, /_A, /_B and /_C are

sec^(2) ( tan^(-1)2) + cosec^(2) ( cot^(-1)3) =

The angles of a triangle are in the ratio 2:4:3. The smallest angle of the triangle is.

If the angles of a triangle ABC are in the ratio 1:2:3. then the corresponding sides are in the ratio ?

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)
  1. If : cos^(2) A + cos^(2) B + cos^(2) C = 1, "then" : Delta ABC is

    Text Solution

    |

  2. In a !ABC if sin A cos B = 1/4 and 3 tan A = B , then the triangle is

    Text Solution

    |

  3. If any /\ABC, tanA+tanB+tanC=6 and tanAtanB=2, then the values of tanA...

    Text Solution

    |

  4. If in a triangle ABC, tan A + tan B + tanC has the value 6, then the v...

    Text Solution

    |

  5. In a triangle ABC if tanA: tan B : tan C = 3:4:5 then the value of sin...

    Text Solution

    |

  6. If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

    Text Solution

    |

  7. If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC =...

    Text Solution

    |

  8. In a DeltaABC, "the value of"cot""(A)/(2)cot""(B)/(2)cos""(C)/(2)is

    Text Solution

    |

  9. " If alpha=(2 pi)/(7) ,then the value of tan alpha tan2 alpha+tan2 alp...

    Text Solution

    |

  10. If x+y+z=pi //2, then tan y tan z + tan z tan x + tan x tan y =

    Text Solution

    |

  11. If x+y+z =pi //2, then cot x +cot y +cot z=

    Text Solution

    |

  12. In a triangle ABC, sum cot A cot B=

    Text Solution

    |

  13. If A,B,C be the angles of a triangle, then sum (cot A + cot B)/( tan A...

    Text Solution

    |

  14. Consider a triangle ABC such that cotA+cotB+cotC=cot theta. Now answe...

    Text Solution

    |

  15. In a triangle ABC, if cot A + cot B + cotC =cot theta , then ( si...

    Text Solution

    |

  16. In a triangle ABC, if cot A + cot B + cotC =cot theta , then The ...

    Text Solution

    |

  17. If Sigmaxy =1 , then Sigma (x+y)/( 1-xy)=

    Text Solution

    |

  18. In a triangle ABC, if the angles are in the ratio 1:2:4, then ( sum se...

    Text Solution

    |

  19. tan A, tan B , tan C are the roots of the cubic equation x^(3) - 7x^(2...

    Text Solution

    |

  20. In a triangle if sin A sin B sin C =p and cos A cos B cos C =q then ta...

    Text Solution

    |