Home
Class 12
MATHS
The top of a tower is observed from thre...

The top of a tower is observed from three point A,B,C on a straight line leading to the tower. If the angles of elevation are `theta,2theta,3theta` from them, then
`(AB)/(BC)=(cot theta-cot 2theta)/(cot 2theta-cot 3 theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to establish the relationship between the segments \( AB \) and \( BC \) based on the angles of elevation from points \( A \), \( B \), and \( C \) towards the top of the tower \( PQ \). ### Step-by-Step Solution: 1. **Understanding the Setup**: - Let \( PQ \) be the height of the tower. - Let \( A \), \( B \), and \( C \) be the points on the ground from which the angles of elevation to the top of the tower are \( \theta \), \( 2\theta \), and \( 3\theta \) respectively. 2. **Using Trigonometric Ratios**: - From point \( A \): \[ \cot \theta = \frac{PQ}{AQ} \quad \text{(where \( AQ = AB + BC + CQ \))} \] - From point \( B \): \[ \cot 2\theta = \frac{PQ}{BQ} \quad \text{(where \( BQ = BC + CQ \))} \] - From point \( C \): \[ \cot 3\theta = \frac{PQ}{CQ} \] 3. **Expressing Distances**: - From the above equations, we can express \( AQ \), \( BQ \), and \( CQ \) in terms of \( PQ \): - From \( A \): \[ AQ = \frac{PQ}{\cot \theta} \] - From \( B \): \[ BQ = \frac{PQ}{\cot 2\theta} \] - From \( C \): \[ CQ = \frac{PQ}{\cot 3\theta} \] 4. **Finding Relationships**: - Now, substituting \( AQ \), \( BQ \), and \( CQ \) into the equations: - From \( A \): \[ AB + BC + CQ = \frac{PQ}{\cot \theta} \] - From \( B \): \[ BC + CQ = \frac{PQ}{\cot 2\theta} \] - From \( C \): \[ CQ = \frac{PQ}{\cot 3\theta} \] 5. **Setting Up the Equation**: - We can now express \( AB \) in terms of \( BC \) and the cotangent values: \[ AB = \frac{PQ}{\cot \theta} - \left(\frac{PQ}{\cot 2\theta}\right) \] - Similarly, we can express \( BC \): \[ BC = \frac{PQ}{\cot 2\theta} - \left(\frac{PQ}{\cot 3\theta}\right) \] 6. **Calculating the Ratio**: - Now, we can find the ratio \( \frac{AB}{BC} \): \[ \frac{AB}{BC} = \frac{\left(\frac{PQ}{\cot \theta} - \frac{PQ}{\cot 2\theta}\right)}{\left(\frac{PQ}{\cot 2\theta} - \frac{PQ}{\cot 3\theta}\right)} \] - Simplifying this gives: \[ \frac{AB}{BC} = \frac{\cot \theta - \cot 2\theta}{\cot 2\theta - \cot 3\theta} \] 7. **Final Result**: - Thus, we have shown that: \[ \frac{AB}{BC} = \frac{\cot \theta - \cot 2\theta}{\cot 2\theta - \cot 3\theta} \]
Promotional Banner

Topper's Solved these Questions

  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) MCQ.s|6 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos

Similar Questions

Explore conceptually related problems

(cot2 theta-cot3 theta)/(cot theta) is equal to

cosec^4 theta-cot^4 theta=cosec^2theta+cot^2 theta

Prove that : cot theta-tan theta=2cot2 theta

Prove that: cot theta cot2 theta+cot2 theta cot3 theta+2=cot theta(cot theta-cot3 theta)

Prove that cot theta-tan theta=2cot 2 theta .

prove that cot theta.cot2 theta+cot2 theta*cot3 theta+2=cot theta(cot theta-cot3 theta)

(sin theta)/(cot theta+cosec theta)=2+(sin theta)/(cot theta-cosec theta)

(tan theta-cot theta)^(2)+2=tan^(2)theta+cot^(2)theta

Solve: cot5theta=cot2theta

cot^(2)theta-cos^(2)theta=cot^(2)theta*cos^(2)theta