Home
Class 12
MATHS
Deduction : lim(x to 0)(sin x^(0))/x =...

Deduction : `lim_(x to 0)(sin x^(0))/x` =

A

1

B

`pi`

C

`pi//180`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(x^\circ)}{x} \), we can follow these steps: ### Step 1: Convert Degrees to Radians First, we need to convert \( x^\circ \) (degrees) into radians. The conversion formula is: \[ x^\circ = x \cdot \frac{\pi}{180} \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin\left(x \cdot \frac{\pi}{180}\right)}{x} \] ### Step 2: Substitute the Radian Conversion Now, substituting the conversion into the limit gives us: \[ \lim_{x \to 0} \frac{\sin\left(\frac{\pi x}{180}\right)}{x} \] ### Step 3: Factor Out the Constant We can factor out the constant \( \frac{\pi}{180} \) from the sine function: \[ \lim_{x \to 0} \frac{\sin\left(\frac{\pi x}{180}\right)}{x} = \lim_{x \to 0} \frac{\sin\left(\frac{\pi x}{180}\right)}{\frac{\pi x}{180}} \cdot \frac{\pi}{180} \] ### Step 4: Apply the Standard Limit Using the standard limit \( \lim_{u \to 0} \frac{\sin(u)}{u} = 1 \), we can set \( u = \frac{\pi x}{180} \). As \( x \to 0 \), \( u \to 0 \) as well. Therefore, we have: \[ \lim_{x \to 0} \frac{\sin\left(\frac{\pi x}{180}\right)}{\frac{\pi x}{180}} = 1 \] ### Step 5: Combine the Results Now we can combine our results: \[ \lim_{x \to 0} \frac{\sin\left(\frac{\pi x}{180}\right)}{x} = 1 \cdot \frac{\pi}{180} = \frac{\pi}{180} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin(x^\circ)}{x} = \frac{\pi}{180} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin x^(@))/(x)

lim_(x rarr0)(sin x)^(x)

lim_(x rarr0) (sin x)/(x)

lim_(x rarr0)(sin^(2)x)/(x)=

lim_(x rarr0)[sin x]

lim_(x rarr0)(x-sin x)/(x^(3)) =

lim_(x rarr0)(sin x)/(x+5)

lim_(x rarr0)(sin(x^(o)))/(x)