Home
Class 12
MATHS
lim(x to infty) sqrt((x + sinx)/(x - cos...

`lim_(x to infty) sqrt((x + sinx)/(x - cosx))=`

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \sqrt{\frac{x + \sin x}{x - \cos x}}, \] we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression inside the square root: \[ \sqrt{\frac{x + \sin x}{x - \cos x}} = \sqrt{\frac{x(1 + \frac{\sin x}{x})}{x(1 - \frac{\cos x}{x})}}. \] ### Step 2: Simplify the expression Next, we can simplify this expression by canceling \(x\) in the numerator and denominator: \[ = \sqrt{\frac{1 + \frac{\sin x}{x}}{1 - \frac{\cos x}{x}}}. \] ### Step 3: Evaluate the limits of \(\frac{\sin x}{x}\) and \(\frac{\cos x}{x}\) As \(x\) approaches infinity, we know that: \[ \lim_{x \to \infty} \frac{\sin x}{x} = 0 \quad \text{and} \quad \lim_{x \to \infty} \frac{\cos x}{x} = 0. \] ### Step 4: Substitute the limits into the expression Substituting these limits into our expression gives: \[ \lim_{x \to \infty} \sqrt{\frac{1 + 0}{1 - 0}} = \sqrt{\frac{1}{1}} = \sqrt{1} = 1. \] ### Final Result Thus, we conclude that: \[ \lim_{x \to \infty} \sqrt{\frac{x + \sin x}{x - \cos x}} = 1. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

lim_(x rarr0)sqrt((x+sinx)/(x-cosx))

lim_(xrarroo) sqrt((x+sinx)/(x-cos x))=