Home
Class 12
MATHS
lim(x to pi/4)(int(2)^(sec^(2)x) xx f(t)...

`lim_(x to pi/4)(int_(2)^(sec^(2)x) xx f(t) dt)/(x^(2) - pi^(2)/16)` equals

A

`8/pi f(2)`

B

`2/pi f(2)`

C

`2/pi f(1/2)`

D

`4f(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ L = \lim_{x \to \frac{\pi}{4}} \frac{\int_{2}^{\sec^2 x} x f(t) \, dt}{x^2 - \frac{\pi^2}{16}}, \] we start by substituting \( x = \frac{\pi}{4} \). ### Step 1: Evaluate the limit directly When we substitute \( x = \frac{\pi}{4} \): - The upper limit of the integral becomes \( \sec^2\left(\frac{\pi}{4}\right) = 2 \). - Thus, the integral becomes \( \int_{2}^{2} x f(t) \, dt = 0 \) (since the limits of integration are the same). - The denominator becomes \( \left(\frac{\pi}{4}\right)^2 - \frac{\pi^2}{16} = 0 \). This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator. #### Numerator: The numerator is \( \int_{2}^{\sec^2 x} x f(t) \, dt \). We will differentiate this with respect to \( x \): Using the Fundamental Theorem of Calculus and the Chain Rule, we have: \[ \frac{d}{dx} \left( \int_{2}^{\sec^2 x} x f(t) \, dt \right) = f(\sec^2 x) \cdot \frac{d}{dx}(\sec^2 x) \cdot x - 0, \] where we evaluate the upper limit at \( \sec^2 x \) and multiply by the derivative of the upper limit \( \sec^2 x \). The derivative of \( \sec^2 x \) is \( 2 \sec^2 x \tan x \). Thus, we have: \[ \frac{d}{dx} \left( \int_{2}^{\sec^2 x} x f(t) \, dt \right) = x f(\sec^2 x) \cdot 2 \sec^2 x \tan x. \] #### Denominator: The denominator is \( x^2 - \frac{\pi^2}{16} \). The derivative is: \[ \frac{d}{dx} \left( x^2 - \frac{\pi^2}{16} \right) = 2x. \] ### Step 3: Rewrite the limit Now, we can rewrite the limit using L'Hôpital's Rule: \[ L = \lim_{x \to \frac{\pi}{4}} \frac{x f(\sec^2 x) \cdot 2 \sec^2 x \tan x}{2x}. \] ### Step 4: Simplify the expression We can simplify the expression: \[ L = \lim_{x \to \frac{\pi}{4}} f(\sec^2 x) \cdot \sec^2 x \tan x. \] ### Step 5: Substitute \( x = \frac{\pi}{4} \) Now substituting \( x = \frac{\pi}{4} \): - \( \sec^2\left(\frac{\pi}{4}\right) = 2 \) - \( \tan\left(\frac{\pi}{4}\right) = 1 \) Thus, we have: \[ L = f(2) \cdot 2 \cdot 1 = 2 f(2). \] ### Final Result Therefore, the limit is: \[ L = 2 f(2). \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr(pi)/(4))(int_(2)^(sec^(2)x)f(t)dt)/(x^(2)-(pi^(2))/(16)) equal :

lim_(x rarr(pi)/(4))(int_(2)^(sec^(2)x)f(t)dt)/(x^(2)-(pi^(2))/(16)) equals:

Let f: R to R be a continuous function. Then lim_(x to pi//4) (pi/4 int_2^(sec^2x) f(x)dx)/(x^2 - pi^2/16) is equal to :

Let f: R to R be a continuous function. Then lim_(x to pi//4) (pi/4 int_2^(sec^2x) f(x)dx)/(x^2 - pi^2/16) is equal to :

The value of lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16)) is:

The value of lim _(x to pi/4) (pi/4 int_2^(sec^2x)f(x)dx)/(x^2-pi^2/16) is

lim_(pi//4)(overset(sec^(2)x)underset(2)intf(l)dt)/(x^(2)-(pi^(2))/(16)) equals

(lim)_(x->4)(int2sec^2\ f(t)dt)/(x^2-(pi^2)/(16)) equals a. 8/pif(2) b. 2/pif(2) c. 2/pif(1/2) d. 4f(2)

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

The value of lim_(x to - pi) (int_(0)^(sin x)sin^(-1)t dt)/((x+pi)^(2)) is equal to L then find the value of 100 L :