Home
Class 12
MATHS
lim(x to 0) (2 sin^(2) 3x)/x^(2) =...

`lim_(x to 0) (2 sin^(2) 3x)/x^(2)` =

A

9

B

2

C

18

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{2 \sin^2(3x)}{x^2} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \frac{2 \sin^2(3x)}{x^2} \] ### Step 2: Use the substitution We can substitute \( u = 3x \). Then as \( x \to 0 \), \( u \to 0 \) as well. We also need to express \( x \) in terms of \( u \): \[ x = \frac{u}{3} \] Thus, \( x^2 = \left(\frac{u}{3}\right)^2 = \frac{u^2}{9} \). ### Step 3: Substitute into the limit Now, substituting \( u \) into the limit gives: \[ \lim_{u \to 0} \frac{2 \sin^2(u)}{\left(\frac{u}{3}\right)^2} = \lim_{u \to 0} \frac{2 \sin^2(u)}{\frac{u^2}{9}} = \lim_{u \to 0} \frac{2 \sin^2(u) \cdot 9}{u^2} = 18 \lim_{u \to 0} \frac{\sin^2(u)}{u^2} \] ### Step 4: Use the limit property We know from the standard limit property that: \[ \lim_{u \to 0} \frac{\sin(u)}{u} = 1 \] Thus, we can square this limit: \[ \lim_{u \to 0} \frac{\sin^2(u)}{u^2} = \left(\lim_{u \to 0} \frac{\sin(u)}{u}\right)^2 = 1^2 = 1 \] ### Step 5: Combine the results Now substituting back into our limit: \[ 18 \lim_{u \to 0} \frac{\sin^2(u)}{u^2} = 18 \cdot 1 = 18 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{2 \sin^2(3x)}{x^2} = 18 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) ("sin"^(2) 4x)/(x^(2))

Evaluate the following : lim_(x to 0)(sin^(2)x)/(2x)

Evaluate lim_(x to 0) ("sin"^(2) (3x//2x))/(x)

lim_(x to 0) (x +2 sin x)/(sqrt(x^(2)+2 sin x + 1)-sqrt(sin^(2) x - x+ 1)) is

lim_(x to 0) (sin x + cos 3x)^(2//x) =

lim_(x rarr0)(x^(2)sin^(2)x)/(x^(2)-sin^(2)x)

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to