Home
Class 12
MATHS
lim(x to 0)(1- cos x)/x^(2)...

`lim_(x to 0)(1- cos x)/x^(2)`

A

0

B

`1//4`

C

`1//2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{1 - \cos x}{x^2} \), we can follow these steps: ### Step 1: Rewrite the expression using the trigonometric identity We know that \( \cos x = 1 - 2 \sin^2\left(\frac{x}{2}\right) \). Therefore, we can rewrite \( 1 - \cos x \) as: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] Substituting this into our limit gives: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{x^2} \] ### Step 2: Simplify the limit Next, we can simplify the limit: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{x^2} = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} \cdot \frac{1}{4} \] This can be rewritten as: \[ = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} \cdot \frac{1}{4} = \frac{1}{2} \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} \] ### Step 3: Apply the limit property Using the limit property \( \lim_{u \to 0} \frac{\sin u}{u} = 1 \), we can set \( u = \frac{x}{2} \). As \( x \to 0 \), \( u \to 0 \) as well: \[ \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} = 1 \] Thus, we have: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)}{x^2} = \frac{1}{2} \cdot 1 = \frac{1}{2} \] ### Final Result Therefore, the limit is: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x to 0)(1-cos2x)/(3x^(2))

If f(x) is continuous and f(9/2)=2/9 , then : lim_(x to 0) f((1-cos 3x)/(x^2)) =

Evaluate lim_(x to 0) (1 - cos 2x)/(x)

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(x rarr0)(1-cos x)/(x^(2))

Prove lim_(x rarr0)((1-cos x)/(x^(2)))^((1)/(x))=0

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

lim_(x rarr0)((1-cos x)/(x^(2)))^((1)/(x))=

evaluating lim_(x rarr0)(1-cos x)/(x^(2))