Home
Class 12
MATHS
lim(x to pi) (sqrt(2 + cos x)-1)/(pi-x)^...

`lim_(x to pi) (sqrt(2 + cos x)-1)/(pi-x)^(2)`

A

`2/pi`

B

`pi`

C

`1/4`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{(\pi - x)^2} \), we can follow these steps: ### Step 1: Direct Substitution First, we substitute \( x = \pi \) into the expression: \[ \sqrt{2 + \cos(\pi)} - 1 = \sqrt{2 - 1} - 1 = \sqrt{1} - 1 = 0 \] And the denominator: \[ (\pi - \pi)^2 = 0^2 = 0 \] Thus, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator. #### Derivative of the Numerator Let \( f(x) = \sqrt{2 + \cos x} - 1 \). The derivative \( f'(x) \) is: \[ f'(x) = \frac{1}{2\sqrt{2 + \cos x}} \cdot (-\sin x) \] So, \[ f'(x) = -\frac{\sin x}{2\sqrt{2 + \cos x}} \] #### Derivative of the Denominator Let \( g(x) = (\pi - x)^2 \). The derivative \( g'(x) \) is: \[ g'(x) = 2(\pi - x)(-1) = -2(\pi - x) \] ### Step 3: Rewrite the Limit Now we can rewrite the limit using L'Hôpital's Rule: \[ \lim_{x \to \pi} \frac{f'(x)}{g'(x)} = \lim_{x \to \pi} \frac{-\frac{\sin x}{2\sqrt{2 + \cos x}}}{-2(\pi - x)} \] This simplifies to: \[ \lim_{x \to \pi} \frac{\sin x}{4(\pi - x)\sqrt{2 + \cos x}} \] ### Step 4: Substitute Again Now we substitute \( x = \pi \): \[ \sin(\pi) = 0 \] And the denominator: \[ 4(\pi - \pi)\sqrt{2 + \cos(\pi)} = 4(0)\sqrt{2 - 1} = 0 \] We still have the form \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 5: Second Application of L'Hôpital's Rule We need to differentiate the numerator and denominator again. #### Second Derivative of the Numerator The numerator is \( \sin x \), so its derivative is: \[ \cos x \] #### Second Derivative of the Denominator The denominator is \( 4(\pi - x)\sqrt{2 + \cos x} \). Using the product rule: \[ g'(x) = 4\left(-\sqrt{2 + \cos x} + (\pi - x)\cdot \frac{-\sin x}{2\sqrt{2 + \cos x}}\right) \] ### Step 6: Rewrite the Limit Again Now we can rewrite the limit: \[ \lim_{x \to \pi} \frac{\cos x}{4\left(-\sqrt{2 + \cos x} + (\pi - x)\cdot \frac{-\sin x}{2\sqrt{2 + \cos x}}\right)} \] ### Step 7: Final Substitution Substituting \( x = \pi \): \[ \cos(\pi) = -1 \quad \text{and} \quad \sqrt{2 + \cos(\pi)} = \sqrt{1} = 1 \] Thus, we have: \[ \lim_{x \to \pi} \frac{-1}{4\left(-1 + 0\right)} = \frac{-1}{-4} = \frac{1}{4} \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{(\pi - x)^2} = \frac{1}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x rarr pi)(sqrt(5+cos x)-2)/((pi-x)^(2))

(i) lim_(x to (pi)/(2)) (1+cos 2x)/((pi-2x)^(2)) (ii) lim_( x to 0) (1-cos x.sqrt(cos 2x))/(x^(2)) (iii) lim_(thetararr(pi)/(6)) (sin(theta-(pi)/(6)))/(sqrt(3)-2 cos theta)

lim_ (x rarr pi) (1 + cos x) / ((pi-x) ^ (2))

lim_(x rarr pi)(sqrt(1-cos x)-sqrt(2))/(sin^(2)x)

lim_ (x rarr pi) (1 + cos x) / (x-pi)

if L=lim_(x rarr pi)(tan(pi cos^(2)x))/((x-pi)^(2)) then (L)/(pi) is equal to:

If f(x) is continuous at x = pi , where f(x)=(sqrt(2+cos x)-1)/((pi-x)^(2))", for " x!= pi , then f(pi)=