Home
Class 12
MATHS
Lt(x to 0)sqrt(1- cos 2x)/x=...

`Lt_(x to 0)sqrt(1- cos 2x)/x`=

A

0

B

1

C

`sqrt(2)`

D

doest not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} \), we can follow these steps: ### Step 1: Use the identity for \(1 - \cos 2x\) We know that: \[ 1 - \cos 2x = 2 \sin^2 x \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} = \lim_{x \to 0} \frac{\sqrt{2 \sin^2 x}}{x} \] ### Step 2: Simplify the expression We can simplify the square root: \[ \sqrt{2 \sin^2 x} = \sqrt{2} \cdot |\sin x| \] Since \(x\) approaches \(0\), \(\sin x\) is positive in the vicinity of \(0\): \[ \lim_{x \to 0} \frac{\sqrt{2} |\sin x|}{x} = \sqrt{2} \lim_{x \to 0} \frac{\sin x}{x} \] ### Step 3: Evaluate the limit We know from the standard limit that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Therefore, we can substitute this into our limit: \[ \sqrt{2} \cdot 1 = \sqrt{2} \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} = \sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

Statement 1:lim_(x rarr0)(sqrt(1-cos2x))/(x) does not existe.Statement 2:f(x)=(sqrt(1-cos2x))/(x) is not defined at x=0

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

Lt_(x rarr0)(1-cos(1-cos x))/(x^(4))=

Simplest form of tan^(-1)((sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))), pi lt x lt (3 pi)/(2) is:

lim_ (x rarr0) ((sqrt (1-cos x + sqrt (1-cos x + sqrt (1-cos x + ... oo))) x ^ (2)) / ()) - 1

If f(x)={:{((sin 2x)/(sqrt(1-cos 2x))", for " 0 lt x lt pi/2),((cos x)/(pi-2x)", for " pi/2 lt x lt pi):} , then