Home
Class 12
MATHS
lim(x to 0) ((1- cos 2x)sin 5x)/(x^(2) s...

`lim_(x to 0) ((1- cos 2x)sin 5x)/(x^(2) sin 3x)`=

A

`10//3`

B

`3//10`

C

`6//5`

D

`5//6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(1 - \cos 2x) \sin 5x}{x^2 \sin 3x} \), we can follow these steps: ### Step 1: Rewrite the expression using the cosine identity We know that \( 1 - \cos 2x = 2 \sin^2 x \). Therefore, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{(2 \sin^2 x) \sin 5x}{x^2 \sin 3x} \] ### Step 2: Simplify the expression Now we can simplify the limit: \[ = \lim_{x \to 0} \frac{2 \sin^2 x \sin 5x}{x^2 \sin 3x} \] ### Step 3: Split the limit We can separate the limit into parts: \[ = 2 \lim_{x \to 0} \frac{\sin^2 x}{x^2} \cdot \lim_{x \to 0} \frac{\sin 5x}{\sin 3x} \] ### Step 4: Evaluate the first limit Using the standard limit \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we have: \[ \lim_{x \to 0} \frac{\sin^2 x}{x^2} = \left( \lim_{x \to 0} \frac{\sin x}{x} \right)^2 = 1^2 = 1 \] ### Step 5: Evaluate the second limit For the second limit, we can use the fact that \( \lim_{x \to 0} \frac{\sin kx}{kx} = 1 \): \[ \lim_{x \to 0} \frac{\sin 5x}{\sin 3x} = \lim_{x \to 0} \frac{5x}{3x} = \frac{5}{3} \] ### Step 6: Combine the results Now we can combine the results: \[ = 2 \cdot 1 \cdot \frac{5}{3} = \frac{10}{3} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{(1 - \cos 2x) \sin 5x}{x^2 \sin 3x} = \frac{10}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

lim_(x rarr0)((1-cos2x)sin5x)/(x^(2)sin3x)

Calculate the value of lim_(x rarr0)(x cos x-sin x)/(x^(2)sin x)

value of lim_(x rarr0)((1-cos2x)sin11x)/(x^(2)sin7x) is

lim_(x to 0) (cos (sin x) - 1)/(x^2) equals :

lim_(x->0) (1-cos x)/(sin^2 x)

lim_(x rarr0)(x cos x-sin x)/(x^(2)sin x)

lim_(x rarr0)(x cos x-sin x)/(x^(2)sin x)

lim_(x rarr0)(1-cos x)/(sin x)