Home
Class 12
MATHS
Lt(x to 0) f(1- cos 3x)/x^(2) where f(x)...

`Lt_(x to 0) f(1- cos 3x)/x^(2)` where `f(x)` is a continous function satisfying the condition `f(9/2) =2/9` is equal to:

A

0

B

`9//2`

C

`2//9`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{f(1 - \cos 3x)}{x^2} \) where \( f(x) \) is a continuous function satisfying \( f\left(\frac{9}{2}\right) = \frac{2}{9} \), we can follow these steps: ### Step 1: Simplify the expression inside the limit We know from trigonometric identities that: \[ 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \] Applying this to \( \cos 3x \): \[ 1 - \cos 3x = 2 \sin^2\left(\frac{3x}{2}\right) \] Thus, we can rewrite the limit: \[ \lim_{x \to 0} \frac{f(1 - \cos 3x)}{x^2} = \lim_{x \to 0} \frac{f\left(2 \sin^2\left(\frac{3x}{2}\right)\right)}{x^2} \] ### Step 2: Substitute \( 2 \sin^2\left(\frac{3x}{2}\right) \) Now, we will express \( \sin^2\left(\frac{3x}{2}\right) \) in terms of \( x \): \[ \sin\left(\frac{3x}{2}\right) \approx \frac{3x}{2} \quad \text{as } x \to 0 \] Thus: \[ \sin^2\left(\frac{3x}{2}\right) \approx \left(\frac{3x}{2}\right)^2 = \frac{9x^2}{4} \] So we have: \[ 2 \sin^2\left(\frac{3x}{2}\right) \approx 2 \cdot \frac{9x^2}{4} = \frac{9x^2}{2} \] ### Step 3: Substitute back into the limit Now we substitute this back into our limit: \[ \lim_{x \to 0} \frac{f\left(\frac{9x^2}{2}\right)}{x^2} \] This can be simplified to: \[ \lim_{x \to 0} \frac{f\left(\frac{9}{2} \cdot x^2\right)}{x^2} \] Let \( y = \frac{9}{2} x^2 \). As \( x \to 0 \), \( y \to 0 \) as well. Therefore, we can rewrite the limit in terms of \( y \): \[ \lim_{y \to 0} \frac{f(y)}{\frac{2y}{9}} = \lim_{y \to 0} \frac{9}{2} f(y) \] ### Step 4: Evaluate the limit using continuity Since \( f \) is continuous and we know \( f\left(\frac{9}{2}\right) = \frac{2}{9} \): \[ \lim_{y \to 0} f(y) = f(0) \] Thus, we need to find \( f(0) \). However, we do not have the value of \( f(0) \) directly, but we can evaluate: \[ \lim_{y \to 0} \frac{9}{2} f(y) = \frac{9}{2} \cdot f(0) \] ### Step 5: Conclusion Since \( f\left(\frac{9}{2}\right) = \frac{2}{9} \), we can conclude: \[ \lim_{x \to 0} \frac{f(1 - \cos 3x)}{x^2} = \frac{9}{2} \cdot \frac{2}{9} = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

f'(x^(2))=(1)/(x),x>0,f(1)=1 Find a function satisfying these conditions.

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

The function y=f(x) satisfying the condition f(x+(1)/(x))=x^(3)+(1)/(x^(3)) is

If a continuous function f satisfies int_(0)^(f(x))t^(3)dt=x^(2)(1+x) for all x>=0 then f(2)

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0)

If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0 , then domain of f(x) is

A function f:R rarr R satisfies the condition x^(2)f(x)+f(1-x)=2x-x^(4). Then f(x) is

Let f(x) be a function satisfying the condition f(-x)=f(x) for all real x.If f'(0) exists, then its value is equal to

A: The functions f(x)=(1+cos^(3)x)/(x^(2))x!=0:f(0)=-(3)/(2) is continuous at x=0R: A function is continuous at x=a if Lt_(x rarr a)f(x)=f(a)