Home
Class 12
MATHS
lim(x to 0) (tan x - sinx)/x^(3) =...

`lim_(x to 0) (tan x - sinx)/x^(3)` =

A

1

B

2

C

`1/2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} \), we can follow these steps: ### Step 1: Rewrite \(\tan x\) We start by rewriting \(\tan x\) in terms of \(\sin x\) and \(\cos x\): \[ \tan x = \frac{\sin x}{\cos x} \] So, we can express the limit as: \[ \lim_{x \to 0} \frac{\frac{\sin x}{\cos x} - \sin x}{x^3} \] ### Step 2: Combine the terms in the numerator Now, we can combine the terms in the numerator: \[ \frac{\sin x}{\cos x} - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \sin x \left(\frac{1 - \cos x}{\cos x}\right) \] Thus, the limit becomes: \[ \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^3 \cos x} \] ### Step 3: Use the small angle approximation for \(\sin x\) and \(\cos x\) As \(x\) approaches 0, we can use the approximations: \[ \sin x \approx x \quad \text{and} \quad 1 - \cos x \approx \frac{x^2}{2} \] Substituting these approximations into our limit gives: \[ \lim_{x \to 0} \frac{x \cdot \frac{x^2}{2}}{x^3 \cos x} \] ### Step 4: Simplify the expression This simplifies to: \[ \lim_{x \to 0} \frac{\frac{x^3}{2}}{x^3 \cos x} = \lim_{x \to 0} \frac{1}{2 \cos x} \] ### Step 5: Evaluate the limit Now, as \(x\) approaches 0, \(\cos x\) approaches 1: \[ \lim_{x \to 0} \frac{1}{2 \cos x} = \frac{1}{2 \cdot 1} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) (tan x - "sin" x)/(x^(3))

lim_(x rarr0)(tan x-sin x)/(x^(3)) is equal to

lim_(x rarr0)(tan2x-sin2x)/(x^(3))

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

lim_(xrarr0)(tanx-sinx)/(x^3)=

lim_(x to 0) (sin(sinx))/x

lim_(x to 0) (x^3 sin(1/x))/sinx

lim_(x to 0) (e^x-e^sinx)/(x-sinx)

Evaluate : lim_( x -> 0 ) ( tanx - sinx ) / sin^3x