Home
Class 12
MATHS
Lt(x to 0)(tan^(-1)x - sin^(-1)x)/x^(3) ...

`Lt_(x to 0)(tan^(-1)x - sin^(-1)x)/x^(3)` =

A

`-1`

B

`-1//2`

C

`1//2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\tan^{-1}x - \sin^{-1}x}{x^3} \), we will use the Taylor series expansions for \( \tan^{-1}x \) and \( \sin^{-1}x \) around \( x = 0 \). ### Step-by-Step Solution: 1. **Expand \( \tan^{-1}x \)**: The Taylor series expansion of \( \tan^{-1}x \) around \( x = 0 \) is: \[ \tan^{-1}x = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots \] 2. **Expand \( \sin^{-1}x \)**: The Taylor series expansion of \( \sin^{-1}x \) around \( x = 0 \) is: \[ \sin^{-1}x = x + \frac{x^3}{6} + \frac{3x^5}{40} + \cdots \] 3. **Subtract the expansions**: Now, we will subtract the expansions: \[ \tan^{-1}x - \sin^{-1}x = \left( x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots \right) - \left( x + \frac{x^3}{6} + \frac{3x^5}{40} + \cdots \right) \] Simplifying this, we get: \[ \tan^{-1}x - \sin^{-1}x = -\frac{x^3}{3} - \frac{x^3}{6} + O(x^5) \] Combining the \( x^3 \) terms: \[ -\frac{x^3}{3} - \frac{x^3}{6} = -\left(\frac{2}{6} + \frac{1}{6}\right)x^3 = -\frac{3}{6}x^3 = -\frac{1}{2}x^3 \] 4. **Substitute back into the limit**: Now we substitute this result back into the limit: \[ \lim_{x \to 0} \frac{\tan^{-1}x - \sin^{-1}x}{x^3} = \lim_{x \to 0} \frac{-\frac{1}{2}x^3 + O(x^5)}{x^3} \] This simplifies to: \[ \lim_{x \to 0} \left(-\frac{1}{2} + \frac{O(x^5)}{x^3}\right) \] As \( x \to 0 \), the term \( \frac{O(x^5)}{x^3} \) approaches 0. 5. **Final result**: Therefore, we have: \[ \lim_{x \to 0} \frac{\tan^{-1}x - \sin^{-1}x}{x^3} = -\frac{1}{2} \] ### Conclusion: The final answer is: \[ \lim_{x \to 0} \frac{\tan^{-1}x - \sin^{-1}x}{x^3} = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan^(-1)x-sin^(-1)x)/(sin^(3)x), is equal to

If I_(1)=lim_(xto 0)sqrt((tan^(-1)x)/x-(sin^(-1)x)/x) and I_(2)=lim_(xto0)sqrt((sin^(-1)x)/x-(tan^(-1)x)/x) , where |x|lt1 , which of the following statement is true?

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3)) equals

Evaluate: lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(3))

Lt_(x rarr0)(tan^(-1)x)/(x)

lim_(x rarr0)((sin^(-1)x-tan^(-1)x)/(x^(3))+(84x tan^(-1)(sqrt(2)-1))/(sin pi x))

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .