Home
Class 12
MATHS
The value of lim(x to 1){(x^(3) + 2x^(2)...

The value of `lim_(x to 1){(x^(3) + 2x^(2) + x+1)/(x^(2) + 2x + 3)}^((1- cos(x-1))/(x-1)^(2))` is equal to:

A

e

B

`e^(1//2)`

C

1

D

`sqrt(5//6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 1} \left( \frac{x^3 + 2x^2 + x + 1}{x^2 + 2x + 3} \right)^{\frac{1 - \cos(x - 1)}{(x - 1)^2}}, \] we will break it down into steps. ### Step 1: Evaluate the limit of the exponent First, we need to evaluate the limit \[ m = \lim_{x \to 1} \frac{1 - \cos(x - 1)}{(x - 1)^2}. \] Using the Taylor series expansion for \(\cos(x)\) around \(x = 0\): \[ \cos(x) \approx 1 - \frac{x^2}{2} + O(x^4), \] we can substitute \(x - 1\) for \(x\): \[ 1 - \cos(x - 1) \approx \frac{(x - 1)^2}{2} + O((x - 1)^4). \] Thus, \[ m = \lim_{x \to 1} \frac{\frac{(x - 1)^2}{2}}{(x - 1)^2} = \lim_{x \to 1} \frac{1}{2} = \frac{1}{2}. \] ### Step 2: Evaluate the base of the limit Next, we evaluate the limit of the base: \[ \lim_{x \to 1} \frac{x^3 + 2x^2 + x + 1}{x^2 + 2x + 3}. \] Substituting \(x = 1\): \[ \frac{1^3 + 2 \cdot 1^2 + 1 + 1}{1^2 + 2 \cdot 1 + 3} = \frac{1 + 2 + 1 + 1}{1 + 2 + 3} = \frac{5}{6}. \] ### Step 3: Combine the results Now we can combine the results from Steps 1 and 2 into the original limit: \[ \lim_{x \to 1} \left( \frac{5}{6} \right)^{\frac{1}{2}} = \sqrt{\frac{5}{6}} = \frac{\sqrt{5}}{\sqrt{6}}. \] ### Final Answer Thus, the value of the limit is \[ \frac{\sqrt{5}}{\sqrt{6}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

lim_ (x rarr1) [(x ^ (3) + 2x ^ (2) + x + 1) / (x ^ (2) + 2x + 3)] ^ ((1-cos (x-1)) / ( (x-1) ^ (2)))

lim_(xto-1) ((x^(4)+x^(2)+x+1)/(x^(2)-x+1))^((1-cos(x+1))/(x+1)^(2)) is equal to

The value of lim_(x rarr1)(x^(7)-2x^(5)+1)/(x^(3)-3x^(2)+2)=

The value of lim_(x to 0) (15^(x) - 5^(x) - 3^(x) + 1)/(1 - cos 2x) is

lim_(xtooo) (1-cos^(3)4x)/(x^(2)) is equal to

lim_(x rarr1)(x^((2)/(3))-2(x^((1)/(3))+1))/((x-1)^(2)) is equal to

lim_(x rarr1)(x^(3)-x^(2)log x+log x-1)/(x^(2)-1) =