Home
Class 12
MATHS
lim(x to 0) (1- cos 2x)/x...

`lim_(x to 0) (1- cos 2x)/x`

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{1 - \cos(2x)}{x} \), we can follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) directly into the limit: \[ \frac{1 - \cos(2 \cdot 0)}{0} = \frac{1 - \cos(0)}{0} = \frac{1 - 1}{0} = \frac{0}{0} \] This gives us an indeterminate form \( \frac{0}{0} \). **Hint:** If you encounter \( \frac{0}{0} \) when evaluating a limit, consider using L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit on the right side exists. Here, let \( f(x) = 1 - \cos(2x) \) and \( g(x) = x \). We need to find the derivatives of the numerator and the denominator. **Hint:** Differentiate the numerator and denominator separately. ### Step 3: Differentiate the Numerator and Denominator 1. **Numerator:** \[ f'(x) = \frac{d}{dx}(1 - \cos(2x)) = 0 + 2\sin(2x) = 2\sin(2x) \] 2. **Denominator:** \[ g'(x) = \frac{d}{dx}(x) = 1 \] Now we can rewrite the limit using these derivatives: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{2\sin(2x)}{1} \] **Hint:** After applying L'Hôpital's Rule, substitute \( x = 0 \) again. ### Step 4: Evaluate the New Limit Now we evaluate the new limit: \[ \lim_{x \to 0} 2\sin(2x) = 2\sin(0) = 2 \cdot 0 = 0 \] Thus, the final result is: \[ \lim_{x \to 0} \frac{1 - \cos(2x)}{x} = 0 \] ### Final Answer The limit is \( 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

Evaluate lim_(x to 0) (1 -cos x)/(x^(2))

Evaluate : lim_(x to 0)(1-cos2x)/(3x^(2))

lim_(x to 0) ((1-cos 2x)(3+cos x))/(x tan 4x) is equal to

lim_(x to 0) ((1-cos 2x)(3+cosx))/(x tan 4x) is equal to

lim_(x to 0) (sqrt(1- cos 2x))/(sqrt2x) =