Home
Class 12
MATHS
Lt(x to 0) (sin sqrt(theta))/sqrt(sin th...

`Lt_(x to 0) (sin sqrt(theta))/sqrt(sin theta)`=

A

1

B

`-1`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{\theta \to 0} \frac{\sin(\sqrt{\theta})}{\sqrt{\sin(\theta)}} \), we will follow these steps: ### Step 1: Rewrite the Limit We start with the limit: \[ L = \lim_{\theta \to 0} \frac{\sin(\sqrt{\theta})}{\sqrt{\sin(\theta)}} \] ### Step 2: Separate the Limit We can separate the limit into two parts: \[ L = \lim_{\theta \to 0} \frac{\sin(\sqrt{\theta})}{\sqrt{\theta}} \cdot \lim_{\theta \to 0} \frac{\sqrt{\theta}}{\sqrt{\sin(\theta)}} \] ### Step 3: Evaluate the First Limit The first limit can be evaluated using the standard limit: \[ \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \] Here, we substitute \( x = \sqrt{\theta} \), so as \( \theta \to 0 \), \( \sqrt{\theta} \to 0 \): \[ \lim_{\theta \to 0} \frac{\sin(\sqrt{\theta})}{\sqrt{\theta}} = 1 \] ### Step 4: Evaluate the Second Limit For the second limit, we use the fact that as \( \theta \to 0 \), \( \sin(\theta) \) behaves like \( \theta \): \[ \lim_{\theta \to 0} \frac{\sqrt{\theta}}{\sqrt{\sin(\theta)}} = \lim_{\theta \to 0} \sqrt{\frac{\theta}{\sin(\theta)}} \] Using the standard limit \( \lim_{\theta \to 0} \frac{\theta}{\sin(\theta)} = 1 \): \[ \lim_{\theta \to 0} \sqrt{\frac{\theta}{\sin(\theta)}} = \sqrt{1} = 1 \] ### Step 5: Combine the Results Now we combine both limits: \[ L = 1 \cdot 1 = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{\theta \to 0} \frac{\sin(\sqrt{\theta})}{\sqrt{\sin(\theta)}} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(theta rarr0^(+))(sin sqrt(theta))/(sqrt(sin theta)) is equal to

int _(0)^(pi//2) (2sqrt(cos theta))/(3(sqrt(sin theta )+ sqrt(cos theta ))) d theta is equal to

sqrt((1+sin theta)/(1-sin theta)?)?

Prove that sqrt(1+sin theta)/sqrt(1-sin theta)=sec theta + tan theta ,-(pi)/(2) lt theta lt (pi)/(2)

If 0<=theta<=pi and (sin0)/(2)=sqrt(1+sin theta)-sqrt(1-sin theta) then the possible value of tan theta, is -

tan theta= A) (sqrt(1-sin^(2)theta))/(sin theta) , B) (1)/(sec theta) , C) (sin theta)/(sqrt(1-sin^(2)theta)) D) (1)/(sqrt(1+Cot^(2)theta)

If theta lies in the second quadrant. Then the value of sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :

sqrt((1+sin theta)/(1-sin theta))+sqrt((1-sin theta)/(1+sin theta))=2sec theta

int_(0)^( pi)(sin theta+cos theta)/(sqrt(1+sin2 theta))d theta

Find the sum of n terms of the series sqrt(1-sin2theta)+(sqrt(1-sin4theta)+sqrt(1-sin6theta)+…