Home
Class 12
MATHS
lim(x to 0) (sqrt(1+ sin x) - sqrt(1- si...

`lim_(x to 0) (sqrt(1+ sin x) - sqrt(1- sinx))/x`=

A

1

B

2

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \(\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\), we can follow these steps: ### Step 1: Multiply by the Conjugate We start by multiplying the numerator and denominator by the conjugate of the numerator: \[ \lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x} \cdot \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}} \] This gives us: \[ \lim_{x \to 0} \frac{(1 + \sin x) - (1 - \sin x)}{x(\sqrt{1 + \sin x} + \sqrt{1 - \sin x})} \] ### Step 2: Simplify the Numerator Now simplify the numerator: \[ (1 + \sin x) - (1 - \sin x) = 1 + \sin x - 1 + \sin x = 2\sin x \] So we have: \[ \lim_{x \to 0} \frac{2\sin x}{x(\sqrt{1 + \sin x} + \sqrt{1 - \sin x})} \] ### Step 3: Factor Out \(x\) Now we can factor out \(x\) from the limit: \[ \lim_{x \to 0} \frac{2\sin x}{x} \cdot \frac{1}{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}} \] ### Step 4: Evaluate the Limit We know that \(\lim_{x \to 0} \frac{\sin x}{x} = 1\). Therefore, we can evaluate the limit: \[ = 2 \cdot 1 \cdot \frac{1}{\sqrt{1 + 0} + \sqrt{1 - 0}} = 2 \cdot \frac{1}{\sqrt{1} + \sqrt{1}} = 2 \cdot \frac{1}{1 + 1} = 2 \cdot \frac{1}{2} = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (sqrt(1+sinx)-sqrt(1-sinx))/x=

lim_(x rarr0)(sqrt(1+sin x)-sqrt(1-sin x))/(x)

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

Evaluate the following limits: lim_(xrarr0)(sqrt(1+sinx)-1sqrt(1-sinx))/(x)

lim_(x rarr0)(tan x)/(sqrt(1+sin x)-sqrt(1-sin x)) is equal to

The value of lim_(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x) , is

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

Evaluate the following limits (i) lim_(x to (pi)/(2)) tan^(2) x [sqrt(2 sin^(2) x + 3 sin x + 4) - sqrt(sin^(2) x + 6 sin x + 2)] (ii) lim_(theta to 0) (sqrt(1 + sin 3 theta) -1)/(ln(1 + tan 2theta)) (iii) lim_(x to 0) (sqrt(1 + x) - ""^(3)sqrt(1 + x))/(x) (iv) lim_(phi to 0) (8)/(phi^(8)) (1 - cos (phi^(2))/(2) - cos (phi^(2))/(4) + cos (phi^(2))/(2). cos (phi^(2))/(4))

lim_(x to 0) (x)/(sqrt(1+x-1))

The value of lim_( x to 0) (( x)/( 8 sqrt( 1 - sin x) - 8 sqrt( 1 + sin x))) is equal to :