Home
Class 12
MATHS
lim(x to 0) (root(3)(1+sin x)- root(3)(1...

`lim_(x to 0) (root(3)(1+sin x)- root(3)(1-sinx))/x`=

A

`1/3`

B

`2/3`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{\sqrt[3]{1 + \sin x} - \sqrt[3]{1 - \sin x}}{x} \] we can follow these steps: ### Step 1: Identify the form of the limit When we substitute \(x = 0\) directly into the expression, we get: \[ \frac{\sqrt[3]{1 + \sin(0)} - \sqrt[3]{1 - \sin(0)}}{0} = \frac{\sqrt[3]{1} - \sqrt[3]{1}}{0} = \frac{1 - 1}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: 1. Differentiate the numerator: \[ \frac{d}{dx} \left( \sqrt[3]{1 + \sin x} - \sqrt[3]{1 - \sin x} \right) = \frac{1}{3}(1 + \sin x)^{-2/3} \cos x - \frac{1}{3}(1 - \sin x)^{-2/3} (-\cos x) \] Simplifying this gives: \[ \frac{1}{3} \left( (1 + \sin x)^{-2/3} \cos x + (1 - \sin x)^{-2/3} \cos x \right) \] 2. Differentiate the denominator: \[ \frac{d}{dx}(x) = 1 \] Now we can rewrite our limit using these derivatives: \[ \lim_{x \to 0} \frac{\frac{1}{3} \left( (1 + \sin x)^{-2/3} \cos x + (1 - \sin x)^{-2/3} \cos x \right)}{1} \] ### Step 3: Evaluate the limit Now we substitute \(x = 0\) into the new expression: - At \(x = 0\), \(\sin(0) = 0\) and \(\cos(0) = 1\): \[ \lim_{x \to 0} \frac{1}{3} \left( (1 + 0)^{-2/3} \cdot 1 + (1 - 0)^{-2/3} \cdot 1 \right) = \frac{1}{3} \left( 1 + 1 \right) = \frac{1}{3} \cdot 2 = \frac{2}{3} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sqrt[3]{1 + \sin x} - \sqrt[3]{1 - \sin x}}{x} = \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

value of lim_(x rarr0)(root(3)(1+tan x)-root(3)(1-tan x))/(x) is

lim_ (x rarr oo) (root (3) (1 + x) -root (3) (1-x)) / (x)

lim_(x rarr0)(root(3)(1+x)-root(3)(1-x))/(x)

Evaluate: lim_(xrarr0) ((1+x)^(1/3)-root(3)(1-sinx))/x

lim_(x rarr0)(root(3)(1+x^(2))-root(4)(1-2x))/(x+x^(2)) is equal to

lim_(x rarr0)(root(4)(1+x)-root(4)(1-x))/(x)=

lim_(x rarr0)(root(3)(1+x)-1)/(x)

lim_(x rarr2)(x-2)/(root(3)(x)-root(3)(2))

lim_(x to 0) (x^3 sin(1/x))/sinx