Home
Class 12
MATHS
lim(h to 0) [1/(h root(3)(8+h))-1/(2h)]=...

`lim_(h to 0) [1/(h root(3)(8+h))-1/(2h)]`=

A

`1/12`

B

`-4/3`

C

`-16/3`

D

`-1/48`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{h \to 0} \left[ \frac{1}{h \sqrt[3]{8+h}} - \frac{1}{2h} \right], \] we will follow these steps: ### Step 1: Combine the fractions First, we need to combine the two fractions under a common denominator. The common denominator will be \(2h \sqrt[3]{8+h}\): \[ \frac{1}{h \sqrt[3]{8+h}} - \frac{1}{2h} = \frac{2 - \sqrt[3]{8+h}}{2h \sqrt[3]{8+h}}. \] ### Step 2: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{h \to 0} \frac{2 - \sqrt[3]{8+h}}{2h \sqrt[3]{8+h}}. \] ### Step 3: Substitute \(h = 0\) If we substitute \(h = 0\) directly, we get: \[ \frac{2 - \sqrt[3]{8}}{0} = \frac{2 - 2}{0} = \frac{0}{0}, \] which is an indeterminate form. Therefore, we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of the numerator \(2 - \sqrt[3]{8+h}\) is: \[ -\frac{1}{3}(8+h)^{-\frac{2}{3}} \cdot 1 = -\frac{1}{3(8+h)^{\frac{2}{3}}}. \] - The derivative of the denominator \(2h \sqrt[3]{8+h}\) is: Using the product rule: \[ 2 \sqrt[3]{8+h} + 2h \cdot \frac{1}{3}(8+h)^{-\frac{2}{3}} \cdot 1 = 2 \sqrt[3]{8+h} + \frac{2h}{3(8+h)^{\frac{2}{3}}}. \] ### Step 5: Rewrite the limit again Now we can rewrite the limit as: \[ \lim_{h \to 0} \frac{-\frac{1}{3(8+h)^{\frac{2}{3}}}}{2 \sqrt[3]{8+h} + \frac{2h}{3(8+h)^{\frac{2}{3}}}}. \] ### Step 6: Substitute \(h = 0\) again Now substituting \(h = 0\): - The numerator becomes: \[ -\frac{1}{3(8)^{\frac{2}{3}}} = -\frac{1}{3 \cdot 4} = -\frac{1}{12}. \] - The denominator becomes: \[ 2 \cdot 2 + 0 = 4. \] ### Step 7: Final calculation Thus, we have: \[ \lim_{h \to 0} \frac{-\frac{1}{12}}{4} = -\frac{1}{48}. \] ### Final Answer The limit is: \[ \boxed{-\frac{1}{48}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limit: lim_(h rarr0)[(1)/(h root(3)(8+h))-(1)/(2h)]

Evaluate lim_(hto0) [(1)/(h^(3)sqrt(8+h))-(1)/(2h)].

What is lim_(h to 0) (sqrt(2x+3h)-sqrt2x)/(2h) equal to?

lim_(h rarr0)h sin(1/h)

lim_ (h rarr0) [(1) / (h (8 + h) ^ ((1) / (3))) - (1) / (2h)]