Home
Class 12
MATHS
lim(x to 0) [(sin (x+a) + sin(a-x) -2sin...

`lim_(x to 0) [(sin (x+a) + sin(a-x) -2sina)/(x sin x)]`=

A

sin a

B

cos a

C

`-sin a`

D

`1/2 cos a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(x + a) + \sin(a - x) - 2\sin a}{x \sin x} \), we can follow these steps: ### Step 1: Simplify the numerator using the sine addition formula We know that: \[ \sin(x + a) = \sin x \cos a + \cos x \sin a \] \[ \sin(a - x) = \sin a \cos x - \cos a \sin x \] Substituting these into the limit gives: \[ \sin(x + a) + \sin(a - x) = (\sin x \cos a + \cos x \sin a) + (\sin a \cos x - \cos a \sin x) \] This simplifies to: \[ (\sin x \cos a - \cos a \sin x) + 2 \cos x \sin a = 2 \cos x \sin a \] Thus, the numerator becomes: \[ 2 \cos x \sin a - 2 \sin a = 2 \sin a (\cos x - 1) \] ### Step 2: Substitute back into the limit Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{2 \sin a (\cos x - 1)}{x \sin x} \] ### Step 3: Analyze the limit As \( x \to 0 \), both the numerator \( \cos x - 1 \) and the denominator \( x \sin x \) approach 0, leading to the indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule Taking the derivative of the numerator and the denominator: - The derivative of the numerator \( 2 \sin a (\cos x - 1) \) is: \[ -2 \sin a \sin x \] - The derivative of the denominator \( x \sin x \) is: \[ \sin x + x \cos x \] Thus, we have: \[ \lim_{x \to 0} \frac{-2 \sin a \sin x}{\sin x + x \cos x} \] ### Step 5: Substitute \( x = 0 \) Now substituting \( x = 0 \): - The numerator becomes \( -2 \sin a \cdot 0 = 0 \). - The denominator becomes \( 0 + 0 \cdot 1 = 0 \), leading again to \( \frac{0}{0} \). ### Step 6: Apply L'Hôpital's Rule again Taking the derivative again: - The derivative of the numerator \( -2 \sin a \sin x \) is: \[ -2 \sin a \cos x \] - The derivative of the denominator \( \sin x + x \cos x \) is: \[ \cos x + \cos x - x \sin x = 2 \cos x - x \sin x \] Thus, we have: \[ \lim_{x \to 0} \frac{-2 \sin a \cos x}{2 \cos x - x \sin x} \] ### Step 7: Substitute \( x = 0 \) again Substituting \( x = 0 \): - The numerator becomes \( -2 \sin a \cdot 1 = -2 \sin a \). - The denominator becomes \( 2 \cdot 1 - 0 \cdot 0 = 2 \). Thus, the limit evaluates to: \[ \frac{-2 \sin a}{2} = -\sin a \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} \frac{\sin(x + a) + \sin(a - x) - 2\sin a}{x \sin x} = -\sin a \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: lim_(x rarr oo)(sin(a+x)+sin(a-x)-2sin a)/(x sin x))

Evaluate the following limit: lim_(x rarr oo)(sin(a+x)+sin(a-x)-2sin a)/(x sin x))

lim_(x rarr0)(sin(a+x)+sin(a-x)-2sin a)/(x)

lim_(x rarr 0) ((a+x)^2 sin(a+x)-a^2 sina)/x=

lim_(x rarr0)(sin(a+2x)-2sin(a+x)+sin a)/(x^(2))