Home
Class 12
MATHS
lim(x to 0) (sin nx[(a-n)nx - tanx])/x^(...

`lim_(x to 0) (sin nx[(a-n)nx - tanx])/x^(2)=0`, where n is non-zero positive integer, then a is equal to:

A

`(n+1)//n`

B

`n^(2)`

C

`1/n`

D

`n + 1/n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression: \[ \lim_{x \to 0} \frac{\sin(nx) \left[(a-n)nx - \tan(x)\right]}{x^2} = 0 \] where \( n \) is a non-zero positive integer. Let's go through the steps to find the value of \( a \). ### Step 1: Rewrite the limit We can separate the limit into two parts: \[ \lim_{x \to 0} \left( \frac{\sin(nx)}{x^2} \cdot \left[(a-n)nx - \tan(x)\right] \right) \] ### Step 2: Use the small angle approximation As \( x \to 0 \), we can use the approximation \( \tan(x) \approx x \). Thus, we can rewrite the expression: \[ \tan(x) \approx x \implies \lim_{x \to 0} \left[(a-n)nx - \tan(x)\right] = \lim_{x \to 0} \left[(a-n)nx - x\right] = \lim_{x \to 0} \left[(a-n)n - 1\right]x \] ### Step 3: Substitute back into the limit Now we substitute this back into our limit: \[ \lim_{x \to 0} \frac{\sin(nx)}{x^2} \cdot \left[(a-n)n - 1\right]x \] This simplifies to: \[ \lim_{x \to 0} \frac{\sin(nx)}{x} \cdot \frac{(a-n)n - 1}{x} \] ### Step 4: Evaluate the limit of \(\frac{\sin(nx)}{x}\) Using the standard limit \( \lim_{x \to 0} \frac{\sin(kx)}{x} = k \) for any constant \( k \): \[ \lim_{x \to 0} \frac{\sin(nx)}{x} = n \] ### Step 5: Combine the limits Now we have: \[ n \cdot \lim_{x \to 0} \frac{(a-n)n - 1}{x} \] For the limit to equal zero, the term \((a-n)n - 1\) must equal zero: \[ (a-n)n - 1 = 0 \] ### Step 6: Solve for \( a \) Now we can solve for \( a \): \[ (a-n)n = 1 \implies a-n = \frac{1}{n} \implies a = n + \frac{1}{n} \] ### Conclusion Thus, the value of \( a \) is: \[ \boxed{n + \frac{1}{n}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0, when n is a non-zero positive integer, then a is equal to

lim_(x to 0) ("sin" (nx)((a - n)nx - tanx))/(x^(2)) = 0 when n is a non-zero positive integer,then a equal to ________

lim_(x->0) (sin(nx)((a-n) nx-tan x))/ x2., when n is a non-zero positive integer, then a is equal to

If lim_(x to 0) ({(a-n)nx - tan x} sin nx)/x^(2) = 0 , where n is non-zero real number, then a is equal to

lim_(x to 0)({(2-n)nx - tan x}sin nx)/(x^(2))=0 , then the natural number n is

If (lim_(x rarr0)({(a-n)nx-tan x}sin nx)/(x^(2))=0 where n is nonzero real number,the a is 0 (b) (n+1)/(n)( c) n(d)n+(1)/(n)

If underset(x to 0)lim ((sin n x)[(a-n) nx-tan x])/(x^(2))=0 , then the value of a.

lim_ (x rarr0) (tan mx) / (tan nx)

If lim_(x rarr0)(x^(n)*sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite,then n must be equal to 4(b)1(c)2(d)3

Find lim_( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+) equal