Home
Class 12
MATHS
The value of: lim(n to infty) cos(x/2) c...

The value of: `lim_(n to infty) cos(x/2) cos(x/4) cos(x/8)….. Cos(x/2^(n))` is:

A

1

B

`(sin x)/x`

C

`x/(sin x)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{4}\right) \cos\left(\frac{x}{8}\right) \cdots \cos\left(\frac{x}{2^n}\right) \), we can follow these steps: ### Step 1: Rewrite the Product We can express the product of cosines in a more manageable form. The limit can be rewritten as: \[ P_n = \prod_{k=1}^{n} \cos\left(\frac{x}{2^k}\right) \] ### Step 2: Use the Identity for Cosine We use the identity \( \cos(a) = \frac{\sin(2a)}{2\sin(a)} \) to express each cosine term: \[ \cos\left(\frac{x}{2^k}\right) = \frac{\sin\left(\frac{x}{2^{k-1}}\right)}{2\sin\left(\frac{x}{2^k}\right)} \] Thus, we can express \( P_n \) as: \[ P_n = \frac{\sin\left(\frac{x}{2^0}\right)}{2\sin\left(\frac{x}{2^1}\right)} \cdot \frac{\sin\left(\frac{x}{2^1}\right)}{2\sin\left(\frac{x}{2^2}\right)} \cdots \frac{\sin\left(\frac{x}{2^{n-1}}\right)}{2\sin\left(\frac{x}{2^n}\right)} \] ### Step 3: Simplify the Expression Notice that in the product, all terms except the first sine and the last sine cancel out: \[ P_n = \frac{\sin\left(x\right)}{2^n \sin\left(\frac{x}{2^n}\right)} \] ### Step 4: Take the Limit as \( n \to \infty \) Now we need to evaluate: \[ \lim_{n \to \infty} P_n = \lim_{n \to \infty} \frac{\sin(x)}{2^n \sin\left(\frac{x}{2^n}\right)} \] As \( n \to \infty \), \( \frac{x}{2^n} \to 0 \), and we can use the limit property \( \lim_{y \to 0} \frac{\sin(y)}{y} = 1 \): \[ \sin\left(\frac{x}{2^n}\right) \sim \frac{x}{2^n} \quad \text{as } n \to \infty \] Thus, \[ \lim_{n \to \infty} \sin\left(\frac{x}{2^n}\right) = \frac{x}{2^n} \] ### Step 5: Final Calculation Substituting this back into our limit gives: \[ \lim_{n \to \infty} P_n = \lim_{n \to \infty} \frac{\sin(x)}{2^n \cdot \frac{x}{2^n}} = \lim_{n \to \infty} \frac{\sin(x)}{x} = \frac{\sin(x)}{x} \] ### Conclusion Therefore, the value of the limit is: \[ \lim_{n \to \infty} \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{4}\right) \cos\left(\frac{x}{8}\right) \cdots = \frac{\sin(x)}{x} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(nrarroo)(cos x cos .(x)/(2)cos.(x)/(4)..cos .(x)/(2^(n))) is equal to

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

The value of lim_(ntooo) (cos ((x)/(n))^(n) , is

8.sin(x/8). cos (x/2).cos (x/4).cos (x/8) =

Evaluate lim_(n rarr oo){cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))}

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals