Home
Class 12
MATHS
lim(h to 0) (sqrt(x+h)-sqrt(x))/h is:...

`lim_(h to 0) (sqrt(x+h)-sqrt(x))/h` is:

A

`1/sqrt(x)`

B

`sqrt(x)`

C

`2sqrt(x)`

D

`1/(2sqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \), we can follow these steps: ### Step 1: Identify the form of the limit As \( h \) approaches 0, both the numerator and denominator approach 0, resulting in an indeterminate form \( \frac{0}{0} \). **Hint:** Check if substituting \( h = 0 \) leads to an indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{h \to c} \frac{f(h)}{g(h)} \) is of the form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{h \to c} \frac{f(h)}{g(h)} = \lim_{h \to c} \frac{f'(h)}{g'(h)} \] In our case, let \( f(h) = \sqrt{x+h} - \sqrt{x} \) and \( g(h) = h \). **Hint:** Differentiate the numerator and denominator separately. ### Step 3: Differentiate the numerator and denominator 1. Differentiate \( f(h) = \sqrt{x+h} - \sqrt{x} \): \[ f'(h) = \frac{1}{2\sqrt{x+h}} \quad \text{(using the chain rule)} \] 2. Differentiate \( g(h) = h \): \[ g'(h) = 1 \] ### Step 4: Rewrite the limit using derivatives Now, we can rewrite the limit using the derivatives: \[ \lim_{h \to 0} \frac{f'(h)}{g'(h)} = \lim_{h \to 0} \frac{\frac{1}{2\sqrt{x+h}}}{1} = \lim_{h \to 0} \frac{1}{2\sqrt{x+h}} \] **Hint:** Substitute \( h = 0 \) in the derivative limit. ### Step 5: Evaluate the limit Now, substitute \( h = 0 \): \[ \lim_{h \to 0} \frac{1}{2\sqrt{x+h}} = \frac{1}{2\sqrt{x+0}} = \frac{1}{2\sqrt{x}} \] ### Final Answer Thus, the limit is: \[ \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{1}{2\sqrt{x}} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(hto0)(sqrt(x+h)-sqrt(x))/(h)

lim_(x to 0) (sqrt(a+x)-sqrt(a-x))/( x)

"lim_(h rarr0)(sqrt(x+h)-sqrt(x))/(h)

What is lim_(h to 0) (sqrt(2x+3h)-sqrt2x)/(2h) equal to?

lim_(x rarr0)(sqrt(x-h)-sqrt(x))/(h)

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

Evaluate: lim_(x rarr 0) (sqrt(5+x)-sqrt(5-x))/(sqrt(10+x)-sqrt(10-x)) .

Evaluate lim_(x rarr 0) (sqrt(4+x)-sqrt(4-x))/(sqrt(9+x)-sqrt(9-x)) .