Home
Class 12
MATHS
lim(x to 2a) (sqrt(x-2a) + sqrt(x)- sqrt...

`lim_(x to 2a) (sqrt(x-2a) + sqrt(x)- sqrt(2a))/sqrt(x^(2) - 4a^(2))=`

A

`1/(2sqrt(a))`

B

`2sqrt(a)`

C

`sqrt(a)`

D

`1/sqrt(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2a} \frac{\sqrt{x - 2a} + \sqrt{x} - \sqrt{2a}}{\sqrt{x^2 - 4a^2}} \), we will follow these steps: ### Step 1: Substitute \( x = 2a \) First, we substitute \( x = 2a \) directly into the expression to check if we get an indeterminate form: \[ \sqrt{2a - 2a} + \sqrt{2a} - \sqrt{2a} = 0 + \sqrt{2a} - \sqrt{2a} = 0 \] For the denominator: \[ \sqrt{(2a)^2 - 4a^2} = \sqrt{4a^2 - 4a^2} = \sqrt{0} = 0 \] Thus, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] where \( f(x) = \sqrt{x - 2a} + \sqrt{x} - \sqrt{2a} \) and \( g(x) = \sqrt{x^2 - 4a^2} \). ### Step 3: Differentiate the Numerator and Denominator Now we differentiate the numerator and the denominator. **Numerator:** 1. The derivative of \( \sqrt{x - 2a} \) is \( \frac{1}{2\sqrt{x - 2a}} \). 2. The derivative of \( \sqrt{x} \) is \( \frac{1}{2\sqrt{x}} \). 3. The derivative of \( \sqrt{2a} \) is \( 0 \). Thus, the derivative of the numerator is: \[ f'(x) = \frac{1}{2\sqrt{x - 2a}} + \frac{1}{2\sqrt{x}} \] **Denominator:** The derivative of \( \sqrt{x^2 - 4a^2} \) is: \[ g'(x) = \frac{1}{2\sqrt{x^2 - 4a^2}} \cdot 2x = \frac{x}{\sqrt{x^2 - 4a^2}} \] ### Step 4: Rewrite the Limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to 2a} \frac{\frac{1}{2\sqrt{x - 2a}} + \frac{1}{2\sqrt{x}}}{\frac{x}{\sqrt{x^2 - 4a^2}}} \] ### Step 5: Simplify the Expression We can simplify this expression: \[ = \lim_{x \to 2a} \frac{\frac{1}{2\sqrt{x - 2a}} + \frac{1}{2\sqrt{x}}}{\frac{x}{\sqrt{x^2 - 4a^2}}} = \lim_{x \to 2a} \frac{\sqrt{x^2 - 4a^2}}{x} \left( \frac{1}{2\sqrt{x - 2a}} + \frac{1}{2\sqrt{x}} \right) \] ### Step 6: Substitute \( x = 2a \) Again Now we substitute \( x = 2a \): 1. The numerator becomes: \[ \sqrt{(2a)^2 - 4a^2} = \sqrt{0} = 0 \] 2. The denominator becomes: \[ 2a \] Thus, we need to evaluate: \[ \lim_{x \to 2a} \left( \frac{1}{2\sqrt{x - 2a}} + \frac{1}{2\sqrt{x}} \right) \] The first term approaches infinity as \( x \to 2a \), while the second term approaches \( \frac{1}{2\sqrt{2a}} \). ### Step 7: Final Limit Calculation Now we can evaluate the limit: \[ \lim_{x \to 2a} \frac{\sqrt{x - 2a} + \sqrt{x}}{\sqrt{x^2 - 4a^2}} = \frac{\sqrt{2a} + 0}{2a} = \frac{\sqrt{2a}}{2a} = \frac{1}{2\sqrt{a}} \] ### Final Answer Thus, the final answer is: \[ \frac{1}{2\sqrt{a}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

Evaluate :lim_(x rarr2a^(+))(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(x^(2)-4a^(2))

lim_(x rarr2)(sqrt(x-2)+sqrt(x)-sqrt(2))/(sqrt(x^(2)-4))

Evaluate lim_(x rarr2)(sqrt(x-2)+sqrt(x)-sqrt(2))/(sqrt(x^(2)-4))

lim_(x to 2) (x - 2)/(sqrt(x) - sqrt(2)) is equal to

lim_(x rarr2)(5)/(sqrt(2)-sqrt(x))

lim_(x rarr2)(sqrt(x)-sqrt(2))/(x^(2)-4)

lim_(x rarr sqrt(2))(sqrt(3+2x)-(sqrt(2)+1))/(x^(2)-2)

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)