Home
Class 12
MATHS
"lt"(n to infty) (1-2+3-4 + 5-6+….-2n)/(...

`"lt"_(n to infty) (1-2+3-4 + 5-6+….-2n)/(sqrt(n^(2) + 1) + sqrt(4n^(2)+1))`=

A

`-1//3`

B

`-1//5`

C

`1//3`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + \ldots - 2n}{\sqrt{n^2 + 1} + \sqrt{4n^2 + 1}}, \] we will break it down step by step. ### Step 1: Simplify the Numerator The numerator \(1 - 2 + 3 - 4 + 5 - 6 + \ldots - 2n\) can be grouped into pairs: \[ (1 - 2) + (3 - 4) + (5 - 6) + \ldots + (2n - 1 - 2n). \] Each pair sums to \(-1\). Since there are \(n\) pairs (from 1 to \(2n\)), the total sum of the numerator is: \[ -n. \] ### Step 2: Simplify the Denominator The denominator is \[ \sqrt{n^2 + 1} + \sqrt{4n^2 + 1}. \] We can factor out \(n\) from each square root: \[ \sqrt{n^2(1 + \frac{1}{n^2})} + \sqrt{4n^2(1 + \frac{1}{4n^2})} = n\sqrt{1 + \frac{1}{n^2}} + 2n\sqrt{1 + \frac{1}{4n^2}}. \] Thus, the denominator simplifies to: \[ n\left(\sqrt{1 + \frac{1}{n^2}} + 2\sqrt{1 + \frac{1}{4n^2}}\right). \] ### Step 3: Combine the Results Now we can rewrite the limit: \[ \lim_{n \to \infty} \frac{-n}{n\left(\sqrt{1 + \frac{1}{n^2}} + 2\sqrt{1 + \frac{1}{4n^2}}\right)}. \] The \(n\) in the numerator and denominator cancels out: \[ \lim_{n \to \infty} \frac{-1}{\sqrt{1 + \frac{1}{n^2}} + 2\sqrt{1 + \frac{1}{4n^2}}}. \] ### Step 4: Evaluate the Limit As \(n \to \infty\), both \(\frac{1}{n^2}\) and \(\frac{1}{4n^2}\) approach 0. Therefore, we have: \[ \sqrt{1 + \frac{1}{n^2}} \to 1 \quad \text{and} \quad 2\sqrt{1 + \frac{1}{4n^2}} \to 2. \] Thus, the limit becomes: \[ \lim_{n \to \infty} \frac{-1}{1 + 2} = \frac{-1}{3}. \] ### Final Answer The final answer is: \[ \boxed{-\frac{1}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(n-gtoo)(1-2+3-4+5-6+-2n)/(sqrt(n^2+1)+sqrt(4n^2-1))=1)1/3 2)-1/33) -1/54)1/5

lim_ (n rarr oo) ((sqrt (n ^ (2) + n) -1) / (n)) ^ (2sqrt (n ^ (2) + n) -1)

lim _(x to oo) (1)/(n ^(3))(sqrt(n ^(2)+1)+2 sqrt(n ^(2) +2 ^(2))+ .... + n sqrt((n ^(2) + n ^(2)))=:

Find lim_(n rarr oo)S_(n); if S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+......+(1)/(sqrt(3n^(2)+2n-1))

If the major axis is n times the minor axis of the ellipse,then eccentricity is 1) (sqrt(n-1))/(n) 2) (sqrt(n-1))/(n^(2)) 3) (sqrt(n^(2)-1))/(n^(2)) 4) (sqrt(n^(2)-1))/(n)