Home
Class 12
MATHS
lim(x to 3)(x-3)/(sqrt(x-2)-sqrt(4-x))=...

`lim_(x to 3)(x-3)/(sqrt(x-2)-sqrt(4-x))`=

A

2

B

3

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}} \), we can follow these steps: ### Step 1: Substitute the limit value First, we substitute \( x = 3 \) into the expression to check if it results in an indeterminate form: \[ \frac{3 - 3}{\sqrt{3 - 2} - \sqrt{4 - 3}} = \frac{0}{1 - 1} = \frac{0}{0} \] Since we have an indeterminate form \( \frac{0}{0} \), we need to manipulate the expression. ### Step 2: Rationalize the denominator To eliminate the square roots in the denominator, we can multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}} \cdot \frac{\sqrt{x - 2} + \sqrt{4 - x}}{\sqrt{x - 2} + \sqrt{4 - x}} = \frac{(x - 3)(\sqrt{x - 2} + \sqrt{4 - x})}{(\sqrt{x - 2})^2 - (\sqrt{4 - x})^2} \] ### Step 3: Simplify the denominator Now, we simplify the denominator using the difference of squares: \[ (\sqrt{x - 2})^2 - (\sqrt{4 - x})^2 = (x - 2) - (4 - x) = x - 2 - 4 + x = 2x - 6 \] Thus, we have: \[ \frac{(x - 3)(\sqrt{x - 2} + \sqrt{4 - x})}{2x - 6} \] ### Step 4: Factor the denominator Notice that \( 2x - 6 \) can be factored: \[ 2x - 6 = 2(x - 3) \] So, we can rewrite our limit as: \[ \frac{(x - 3)(\sqrt{x - 2} + \sqrt{4 - x})}{2(x - 3)} \] ### Step 5: Cancel out the common terms Now, we can cancel \( x - 3 \) from the numerator and the denominator: \[ \frac{\sqrt{x - 2} + \sqrt{4 - x}}{2} \] ### Step 6: Substitute the limit value again Now we can substitute \( x = 3 \) into the simplified expression: \[ \frac{\sqrt{3 - 2} + \sqrt{4 - 3}}{2} = \frac{\sqrt{1} + \sqrt{1}}{2} = \frac{1 + 1}{2} = \frac{2}{2} = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x rarr3)(x-3)/(sqrt(x-2)-sqrt(4-x))

The value of lim_(x rarr3)(x-3)/(sqrt(x-2)-sqrt(4-x)) is eqaul to

"lim_(x rarr3)((x-3)/(sqrt(x-2)-sqrt(4-x)))=

lim_(x rarr3)(x-3)/(sqrt(x+6)-sqrt(2x+3))=

lim_(x rarr 3)(x-3)/(sqrt(x+6)-sqrt(2x+3))= _____.

Evaluate the following: lim_(xrarr2)(x^2-4)/(sqrt(3x-2)-sqrt(6-x))

lim_(x rarr2)(x-2)/(sqrt(x+2)-sqrt(3x-2))

Evaluate lim_(x to 20) (x^(2)-4)/((sqrt(3x)-2)-(sqrt(x)+2))

lim_(x rarr3)(sqrt(3x)-3)/(sqrt(2x-4)-sqrt(2)) is equal to