Home
Class 12
MATHS
lim(x to infty) [x-sqrt(x^(2) +x)]=...

`lim_(x to infty) [x-sqrt(x^(2) +x)]`=

A

`1//2`

B

1

C

`-1//2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( x - \sqrt{x^2 + x} \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ L = \lim_{x \to \infty} \left( x - \sqrt{x^2 + x} \right) \] ### Step 2: Rationalize the expression To simplify the expression, we can multiply and divide by the conjugate: \[ L = \lim_{x \to \infty} \frac{\left( x - \sqrt{x^2 + x} \right) \left( x + \sqrt{x^2 + x} \right)}{x + \sqrt{x^2 + x}} \] This gives us: \[ L = \lim_{x \to \infty} \frac{x^2 - (x^2 + x)}{x + \sqrt{x^2 + x}} \] ### Step 3: Simplify the numerator The numerator simplifies to: \[ x^2 - (x^2 + x) = -x \] So now we have: \[ L = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}} \] ### Step 4: Factor out \(x\) in the denominator Now, we factor \(x\) out of the denominator: \[ L = \lim_{x \to \infty} \frac{-x}{x \left( 1 + \sqrt{1 + \frac{1}{x}} \right)} \] This simplifies to: \[ L = \lim_{x \to \infty} \frac{-1}{1 + \sqrt{1 + \frac{1}{x}}} \] ### Step 5: Evaluate the limit As \(x\) approaches infinity, \(\frac{1}{x}\) approaches 0. Thus, we have: \[ L = \frac{-1}{1 + \sqrt{1 + 0}} = \frac{-1}{1 + 1} = \frac{-1}{2} \] ### Final Answer Therefore, the limit is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to infty)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1)) .

lim_(x to - infty) [((x^(4) sin (1/x) + x^(2)))/((1+|x|^(3)))]=...