Home
Class 12
MATHS
"lt"(x to infty) sqrt(x) (sqrt(x+c) - sq...

`"lt"_(x to infty) sqrt(x) (sqrt(x+c) - sqrt(x))`=

A

`c//2`

B

`c//3`

C

`c//4`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{x \to \infty} \sqrt{x} \left( \sqrt{x+c} - \sqrt{x} \right) \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ L = \lim_{x \to \infty} \sqrt{x} \left( \sqrt{x+c} - \sqrt{x} \right) \] ### Step 2: Rationalize the Expression To simplify the expression, we can multiply and divide by the conjugate: \[ L = \lim_{x \to \infty} \sqrt{x} \left( \sqrt{x+c} - \sqrt{x} \right) \cdot \frac{\sqrt{x+c} + \sqrt{x}}{\sqrt{x+c} + \sqrt{x}} \] This gives us: \[ L = \lim_{x \to \infty} \frac{\sqrt{x} \left( x+c - x \right)}{\sqrt{x+c} + \sqrt{x}} = \lim_{x \to \infty} \frac{\sqrt{x} \cdot c}{\sqrt{x+c} + \sqrt{x}} \] ### Step 3: Simplify the Denominator Now, we simplify the denominator: \[ \sqrt{x+c} + \sqrt{x} = \sqrt{x(1 + \frac{c}{x})} + \sqrt{x} = \sqrt{x} \left( \sqrt{1 + \frac{c}{x}} + 1 \right) \] ### Step 4: Substitute Back into the Limit Substituting this back into our limit, we have: \[ L = \lim_{x \to \infty} \frac{\sqrt{x} \cdot c}{\sqrt{x} \left( \sqrt{1 + \frac{c}{x}} + 1 \right)} = \lim_{x \to \infty} \frac{c}{\sqrt{1 + \frac{c}{x}} + 1} \] ### Step 5: Evaluate the Limit As \( x \to \infty \), \( \frac{c}{x} \to 0 \), so: \[ \sqrt{1 + \frac{c}{x}} \to \sqrt{1} = 1 \] Thus, we have: \[ L = \frac{c}{1 + 1} = \frac{c}{2} \] ### Final Answer The limit is: \[ L = \frac{c}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate :lim_(x rarr oo)sqrt(x)(sqrt(x+c)-sqrt(x))

lim_(x rarr oo)sqrt(x)(sqrt(x)-sqrt(x-a))