Home
Class 12
MATHS
If f(9)=9 , f'(9)= 4 then lim (x rarr9)...

If` f(9)=9 , f'(9)= 4 `then` lim _ (x rarr9) (sqrt f(x) -3)/(sqrt(x)-3)` =_____.

A

3

B

4

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(9)=9 and f'(9)=1 then lim_(x rarr 9) (3-sqrt(f(x)))/(3-sqrtx)

lim_(x rarr0)(sqrt(x+4)-2)/(sqrt(x+9)-3)

lim_(x rarr9)(3-sqrt(x))/(4-sqrt(2x-2))

lim_(x rarr3)(sqrt(x)-sqrt(3))/(sqrt(x^(2)-9))

lim_(x rarr4)(3x-8sqrt(x+4))/(5x-9sqrt(x)-2)

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

If f be a function such that f(9)=9 and f'(9)=3 , then lim_(xto9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to

lim_(x rarr0)(sqrt(x^(2)+1)-1)/(sqrt(x^(2)+9)-3)

lim_(x rarr3)(sqrt(x+3)-sqrt(6))/(x^(2)-9)=