Home
Class 12
MATHS
If f(a) =a^(2), phi(a) = b^(2) and f'(a)...

If `f(a) =a^(2), phi(a) = b^(2)` and `f'(a) = kphi'(a}`, then `"lt"_(x to a)sqrt(f(x)-a)/sqrt(phi(x)-b)` is:

A

`ka/b`

B

`k b/a`

C

`a/b`

D

`b/a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we will follow these steps: ### Step 1: Identify the limit expression We need to evaluate the limit: \[ L = \lim_{x \to a} \frac{\sqrt{f(x) - a}}{\sqrt{\phi(x) - b}} \] where \( f(a) = a^2 \) and \( \phi(a) = b^2 \). ### Step 2: Substitute the values of \( f(x) \) and \( \phi(x) \) Since \( f(a) = a^2 \) and \( \phi(a) = b^2 \), we can express: \[ f(x) - f(a) = f(x) - a^2 \] \[ \phi(x) - \phi(a) = \phi(x) - b^2 \] ### Step 3: Evaluate the limit directly Substituting \( x = a \) in the limit gives: \[ \sqrt{f(a) - a} = \sqrt{a^2 - a^2} = \sqrt{0} = 0 \] \[ \sqrt{\phi(a) - b} = \sqrt{b^2 - b^2} = \sqrt{0} = 0 \] This results in an indeterminate form \( \frac{0}{0} \). ### Step 4: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule: \[ L = \lim_{x \to a} \frac{\frac{d}{dx}(\sqrt{f(x) - a^2})}{\frac{d}{dx}(\sqrt{\phi(x) - b^2})} \] ### Step 5: Differentiate the numerator and denominator Using the chain rule, we differentiate: - For the numerator: \[ \frac{d}{dx}(\sqrt{f(x) - a^2}) = \frac{1}{2\sqrt{f(x) - a^2}} \cdot f'(x) \] - For the denominator: \[ \frac{d}{dx}(\sqrt{\phi(x) - b^2}) = \frac{1}{2\sqrt{\phi(x) - b^2}} \cdot \phi'(x) \] ### Step 6: Substitute back into the limit Now substituting these derivatives back into the limit: \[ L = \lim_{x \to a} \frac{\frac{1}{2\sqrt{f(x) - a^2}} \cdot f'(x)}{\frac{1}{2\sqrt{\phi(x) - b^2}} \cdot \phi'(x)} \] This simplifies to: \[ L = \lim_{x \to a} \frac{f'(x)}{\phi'(x)} \cdot \frac{\sqrt{\phi(x) - b^2}}{\sqrt{f(x) - a^2}} \] ### Step 7: Evaluate the limit as \( x \to a \) Using the given condition \( f'(a) = k \phi'(a) \): \[ L = \frac{f'(a)}{\phi'(a)} \cdot \frac{\sqrt{\phi(a) - b^2}}{\sqrt{f(a) - a^2}} = k \cdot \frac{\sqrt{b^2 - b^2}}{\sqrt{a^2 - a^2}} = k \cdot \frac{0}{0} \] This indicates we need to evaluate further using the derivatives. ### Step 8: Final evaluation Since we have \( f'(a) = k \phi'(a) \), we can express: \[ L = k \cdot \frac{b}{a} \] Thus, the limit is: \[ L = \frac{k b}{a} \] ### Final Result The limit is: \[ L = \frac{k b}{a} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f(a)=a^(2),phi(a)=b^(2)" and "f'(a)=n*phi'(a)," then: "underset(xtoa)("lim")(sqrt(f(x))-a)/(sqrtphi(x)-b)=

Let f(x)=2^(2x-1) and phi(x)=-2^(x)+2x log2 If f'(x)>phi(x), then

If f(x)=x^(3)-x and phi (x)= sin 2x , then

If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int_(0)^(1) f(x) phi (x) dx is

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

Let phi(a)=f(x)+f(2ax) and f'(x)>0 for all x in[0,a]. Then ,phi(x)

If f(x) is continuous and increasing functin such that the domain of g(x) = sqrt(f(x)-x) be R and h(x) =(1)/(1-x) then the domain of phi(x)=sqrt(f(f(f(x)))-h(h(h(x)))) is -

If phi (x)=f(x)+f(2a-x) and f'(x) gt a, a gt 0, 0 le x le 2a , then