Home
Class 12
MATHS
lim(x to infty) (x^(3)-3x+2)/(2x^(3)+x-...

`lim_(x to infty) (x^(3)-3x+2)/(2x^(3)+x-3)` =

A

2

B

`1//2`

C

0

D

not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \frac{x^3 - 3x + 2}{2x^3 + x - 3} \), we can follow these steps: ### Step 1: Identify the highest power of \( x \) In both the numerator and the denominator, the highest power of \( x \) is \( x^3 \). ### Step 2: Factor out the highest power of \( x \) We can factor \( x^3 \) out of both the numerator and the denominator: \[ \lim_{x \to \infty} \frac{x^3(1 - \frac{3}{x^2} + \frac{2}{x^3})}{x^3(2 + \frac{1}{x^2} - \frac{3}{x^3})} \] ### Step 3: Simplify the expression After factoring out \( x^3 \), we can cancel \( x^3 \) from the numerator and the denominator: \[ \lim_{x \to \infty} \frac{1 - \frac{3}{x^2} + \frac{2}{x^3}}{2 + \frac{1}{x^2} - \frac{3}{x^3}} \] ### Step 4: Evaluate the limit Now, we can evaluate the limit as \( x \) approaches infinity. As \( x \to \infty \), the terms \( \frac{3}{x^2} \), \( \frac{2}{x^3} \), \( \frac{1}{x^2} \), and \( \frac{3}{x^3} \) all approach 0: \[ \lim_{x \to \infty} \frac{1 - 0 + 0}{2 + 0 - 0} = \frac{1}{2} \] ### Conclusion Thus, the limit is: \[ \lim_{x \to \infty} \frac{x^3 - 3x + 2}{2x^3 + x - 3} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

lim_(x rarr1)(x^(2)-3x+2)/(x^(3)-4x+3)

lim_(x to 3)(x^(3)-4x-15)/(x^(3)+x^(2)-6x-18)=…………………

Evaluate lim_(xto0^(-)) (x^(2)-3x+2)/(x^(3)-2x^(2)).

lim_(x rarr3)(x^(2)-x-6)/(x^(3)-3x^(2)+x-3)