Home
Class 12
MATHS
lim(x to infty) sqrt(x^(2)-1)/(2x+1)=...

`lim_(x to infty) sqrt(x^(2)-1)/(2x+1)`=

A

1

B

0

C

`-1`

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1} \), we can follow these steps: ### Step 1: Simplify the expression inside the limit We start with the limit: \[ \lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1} \] ### Step 2: Factor out \(x\) from the square root Notice that as \(x\) approaches infinity, \(x^2\) dominates \(-1\) in the square root. We can factor \(x^2\) out of the square root: \[ \sqrt{x^2 - 1} = \sqrt{x^2(1 - \frac{1}{x^2})} = x\sqrt{1 - \frac{1}{x^2}} \] Thus, the limit becomes: \[ \lim_{x \to \infty} \frac{x\sqrt{1 - \frac{1}{x^2}}}{2x + 1} \] ### Step 3: Simplify the denominator Now, we can simplify the denominator \(2x + 1\): \[ 2x + 1 = 2x(1 + \frac{1}{2x}) \] So we rewrite the limit: \[ \lim_{x \to \infty} \frac{x\sqrt{1 - \frac{1}{x^2}}}{2x(1 + \frac{1}{2x})} \] ### Step 4: Cancel \(x\) in the numerator and denominator We can cancel \(x\) from the numerator and denominator: \[ \lim_{x \to \infty} \frac{\sqrt{1 - \frac{1}{x^2}}}{2(1 + \frac{1}{2x})} \] ### Step 5: Evaluate the limit as \(x\) approaches infinity As \(x\) approaches infinity, \(\frac{1}{x^2}\) approaches \(0\) and \(\frac{1}{2x}\) also approaches \(0\). Therefore: \[ \sqrt{1 - \frac{1}{x^2}} \to \sqrt{1} = 1 \] and \[ 2(1 + \frac{1}{2x}) \to 2(1 + 0) = 2 \] Thus, the limit simplifies to: \[ \frac{1}{2} \] ### Final Result Therefore, the limit is: \[ \lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1} = \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x->\infty)sqrt(x^(2)+1)/(x+1)

Evaluate the following limits : lim_(x to infty)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1)) .

If lim_(x to infty) ((x^(2)+x+1)/(x+1)-ax -b)=4 then