Home
Class 12
MATHS
lim(x to infty) ((2+x)^(40) (4+x)^(5))/(...

`lim_(x to infty) ((2+x)^(40) (4+x)^(5))/(2-x)^(45)` =

A

`-1`

B

`1

C

16

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \frac{(2+x)^{40} (4+x)^{5}}{(2-x)^{45}} \), we can follow these steps: ### Step 1: Simplify the expression We start by rewriting the terms in the limit to make it easier to analyze as \( x \) approaches infinity. \[ \lim_{x \to \infty} \frac{(2+x)^{40} (4+x)^{5}}{(2-x)^{45}} = \lim_{x \to \infty} \frac{(x(1+\frac{2}{x}))^{40} (x(1+\frac{4}{x}))^{5}}{(x(-1+\frac{2}{x}))^{45}} \] ### Step 2: Factor out \( x \) Now we factor out \( x \) from each term: \[ = \lim_{x \to \infty} \frac{x^{40} (1+\frac{2}{x})^{40} \cdot x^{5} (1+\frac{4}{x})^{5}}{x^{45} (-1+\frac{2}{x})^{45}} \] ### Step 3: Combine the powers of \( x \) Combine the powers of \( x \): \[ = \lim_{x \to \infty} \frac{x^{45} (1+\frac{2}{x})^{40} (1+\frac{4}{x})^{5}}{x^{45} (-1+\frac{2}{x})^{45}} \] ### Step 4: Cancel \( x^{45} \) We can cancel \( x^{45} \) from the numerator and denominator: \[ = \lim_{x \to \infty} \frac{(1+\frac{2}{x})^{40} (1+\frac{4}{x})^{5}}{(-1+\frac{2}{x})^{45}} \] ### Step 5: Evaluate the limit As \( x \) approaches infinity, \( \frac{2}{x} \) and \( \frac{4}{x} \) both approach 0. Thus, we can evaluate the limit: \[ = \frac{(1+0)^{40} (1+0)^{5}}{(-1+0)^{45}} = \frac{1 \cdot 1}{(-1)^{45}} = \frac{1}{-1} = -1 \] ### Final Result Thus, the limit is: \[ \lim_{x \to \infty} \frac{(2+x)^{40} (4+x)^{5}}{(2-x)^{45}} = -1 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Which of the following is/are true? (a) lim_(x rarr oo)((2+x)^(40)(4+x)^(5))/((2-x)^(45))=1(b)lim_(x rarr0)(1-cos^(3)x)/(x sin x cos x)=(3)/(2)(c)lim_(x rarr0)(ln(1+2x)-2ln(1+x))/(cot^(-1)(sqrt(x+1)-sqrt(x)))=-1 (d) lim_(x rarr oo)(cot^(-1)(sqrt(x+1)-sqrt(x)))/(sec^(1)((2x+1)/((x-1)^(2)))=1)=-1 (d)

lim_ (x rarr oo) ((2 + x) ^ (40) (4 + x) ^ (5)) / ((2-x) ^ (45)) =

lim_(x rarr oo)((2x+1)^(40)(4x-1)^(5))/((2x+3)^(45)) is equal to (a)16 (b) 24(c)32 (d) 8

lim_(x to - infty) [((x^(4) sin (1/x) + x^(2)))/((1+|x|^(3)))]=...