Home
Class 12
MATHS
The value of lim(x to infty) sqrt(a^(2)x...

The value of `lim_(x to infty) sqrt(a^(2)x^(2)+ax +1) - sqrt(a^(2)x^(2))` is:

A

`1//2`

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression: \[ \lim_{x \to \infty} \left( \sqrt{a^2 x^2 + ax + 1} - \sqrt{a^2 x^2} \right) \] ### Step 1: Rewrite the limit expression We can rewrite the limit as: \[ L = \lim_{x \to \infty} \left( \sqrt{a^2 x^2 + ax + 1} - \sqrt{a^2 x^2} \right) \] ### Step 2: Factor out \(x^2\) from the square roots Notice that both square roots contain \(x^2\). We can factor \(x^2\) out of the square root: \[ L = \lim_{x \to \infty} \left( \sqrt{x^2 \left( a^2 + \frac{a}{x} + \frac{1}{x^2} \right)} - \sqrt{x^2 a^2} \right) \] This simplifies to: \[ L = \lim_{x \to \infty} \left( x \sqrt{a^2 + \frac{a}{x} + \frac{1}{x^2}} - x \sqrt{a^2} \right) \] ### Step 3: Factor out \(x\) Now we can factor \(x\) out of the limit: \[ L = \lim_{x \to \infty} x \left( \sqrt{a^2 + \frac{a}{x} + \frac{1}{x^2}} - \sqrt{a^2} \right) \] ### Step 4: Simplify the expression inside the limit Next, we simplify the expression inside the parentheses. We can use the difference of squares: \[ L = \lim_{x \to \infty} x \cdot \frac{\left( a^2 + \frac{a}{x} + \frac{1}{x^2} \right) - a^2}{\sqrt{a^2 + \frac{a}{x} + \frac{1}{x^2}} + \sqrt{a^2}} \] This simplifies to: \[ L = \lim_{x \to \infty} x \cdot \frac{\frac{a}{x} + \frac{1}{x^2}}{\sqrt{a^2 + \frac{a}{x} + \frac{1}{x^2}} + \sqrt{a^2}} \] ### Step 5: Simplify further Now we can simplify the numerator: \[ L = \lim_{x \to \infty} \frac{a + \frac{1}{x}}{\sqrt{a^2 + \frac{a}{x} + \frac{1}{x^2}} + \sqrt{a^2}} \] ### Step 6: Evaluate the limit As \(x \to \infty\), \(\frac{1}{x} \to 0\), so we have: \[ L = \frac{a}{\sqrt{a^2} + \sqrt{a^2}} = \frac{a}{2\sqrt{a^2}} = \frac{a}{2|a|} \] ### Step 7: Final result Thus, the limit evaluates to: \[ L = \frac{1}{2} \quad \text{(if } a > 0\text{)} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xtooo)(sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)),(agt0) is

the value of lim_(x rarr oo)(sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)),(a>0) is

What is lim_(xtooo) (sqrt(a^(2)x^(2)ax+1)sqrt(a^(2)x^(2)+1)) equal to?

The value of lim_(x to oo) (sqrt(x^2+1)-sqrt(x^2-1)) is