Home
Class 12
MATHS
lim(x to infty) (root(4)(x^(5) + 2) - ro...

`lim_(x to infty) (root(4)(x^(5) + 2) - root(3)(x^(2)+1))/(root(5)(x^(4)+2)-root(2)(x^(3)+1))`=

A

`-1`

B

0

C

1

D

`infty`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{\sqrt[4]{x^5 + 2} - \sqrt[3]{x^2 + 1}}{\sqrt[5]{x^4 + 2} - \sqrt{ x^3 + 1}} \] we will follow these steps: ### Step 1: Identify the dominant terms As \(x\) approaches infinity, the dominant terms in the numerator and denominator will dictate the behavior of the limit. - In the numerator, \(\sqrt[4]{x^5 + 2}\) behaves like \(\sqrt[4]{x^5}\) and \(\sqrt[3]{x^2 + 1}\) behaves like \(\sqrt[3]{x^2}\). - In the denominator, \(\sqrt[5]{x^4 + 2}\) behaves like \(\sqrt[5]{x^4}\) and \(\sqrt{x^3 + 1}\) behaves like \(\sqrt{x^3}\). ### Step 2: Rewrite the expression We can rewrite the limit as: \[ \lim_{x \to \infty} \frac{\sqrt[4]{x^5} - \sqrt[3]{x^2}}{\sqrt[5]{x^4} - \sqrt{x^3}} \] ### Step 3: Factor out the highest powers Now, factor out the highest powers from the numerator and denominator: - From the numerator: \[ \sqrt[4]{x^5} = x^{5/4} \quad \text{and} \quad \sqrt[3]{x^2} = x^{2/3} \] Thus, we can factor \(x^{5/4}\): \[ x^{5/4} \left(1 - \frac{x^{2/3}}{x^{5/4}}\right) = x^{5/4} \left(1 - x^{-1/12}\right) \] - From the denominator: \[ \sqrt[5]{x^4} = x^{4/5} \quad \text{and} \quad \sqrt{x^3} = x^{3/2} \] Thus, we can factor \(x^{4/5}\): \[ x^{4/5} \left(1 - \frac{x^{3/2}}{x^{4/5}}\right) = x^{4/5} \left(1 - x^{3/10}\right) \] ### Step 4: Substitute back into the limit Now substituting back into the limit gives us: \[ \lim_{x \to \infty} \frac{x^{5/4} \left(1 - x^{-1/12}\right)}{x^{4/5} \left(1 - x^{3/10}\right)} \] ### Step 5: Simplify the limit Now simplify the limit: \[ = \lim_{x \to \infty} x^{5/4 - 4/5} \cdot \frac{1 - x^{-1/12}}{1 - x^{3/10}} \] Calculating the exponent: \[ 5/4 - 4/5 = \frac{25 - 16}{20} = \frac{9}{20} \] So, we have: \[ = \lim_{x \to \infty} x^{9/20} \cdot \frac{1 - x^{-1/12}}{1 - x^{3/10}} \] ### Step 6: Analyze the limit As \(x \to \infty\): - \(x^{-1/12} \to 0\) - \(x^{3/10} \to \infty\) Thus, the limit simplifies to: \[ = \lim_{x \to \infty} x^{9/20} \cdot \frac{1 - 0}{1 - \infty} = x^{9/20} \cdot \frac{1}{-\infty} \to 0 \] ### Final Result Thus, the limit evaluates to: \[ \lim_{x \to \infty} \frac{\sqrt[4]{x^5 + 2} - \sqrt[3]{x^2 + 1}}{\sqrt[5]{x^4 + 2} - \sqrt{x^3 + 1}} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xtooo) (sqrt(x^(2)+1)-root(3)(x^3+1))/(root(4)(x^(4)+1)-root(5)(x^(4)+1))

Simplify root(5)(x^(4)root(4)(x^(3)root(3)(x^(2)sqrt(x))))

Evaluate lim_(x rarr1)(root(1 3)(x)-root(7)(x))/(root(5)(x)-root(3)(x))

int(root(3)(x))(root(5)(1+root(3)(x^(4))))dx

lim_ (x rarr oo) (root (3) (1 + x) -root (3) (1-x)) / (x)

lim_(x rarr2)(x-2)/(root(3)(x)-root(3)(2))

If root(3)(3(root(3)(x)-(1)/(root(3)(x))))=2, then root(3)(x)-(1)/(root(3)(x))

Solve : root(4)(|x-3|^(x+1))=root(3)(|x-3|^(x-2)) .