Home
Class 12
MATHS
lim(x to -infty)sqrt(x^(2)-x+1)-ax + b=0...

`lim_(x to -infty)sqrt(x^(2)-x+1)-ax + b=0`, then (a,b) is:

A

`(-1,1/2)`

B

`(1,-1/2)`

C

`(-1,2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to -\infty} \left( \sqrt{x^2 - x + 1} - ax + b \right) = 0 \), we will follow these steps: ### Step 1: Analyze the limit We start by rewriting the limit: \[ L = \lim_{x \to -\infty} \left( \sqrt{x^2 - x + 1} - ax + b \right) \] We want \( L = 0 \). ### Step 2: Simplify the square root For large negative \( x \), we can approximate the expression inside the square root: \[ \sqrt{x^2 - x + 1} \approx \sqrt{x^2} = |x| = -x \quad (\text{since } x \text{ is negative}) \] Thus, we can write: \[ \sqrt{x^2 - x + 1} \approx -x \text{ as } x \to -\infty \] ### Step 3: Substitute the approximation into the limit Now substituting this approximation into our limit: \[ L \approx \lim_{x \to -\infty} \left( -x - ax + b \right) = \lim_{x \to -\infty} \left( -(1 + a)x + b \right) \] ### Step 4: Analyze the resulting expression For the limit to equal zero as \( x \to -\infty \), the coefficient of \( x \) must be zero: \[ -(1 + a) = 0 \implies 1 + a = 0 \implies a = -1 \] ### Step 5: Substitute \( a \) back into the limit Now substituting \( a = -1 \): \[ L = \lim_{x \to -\infty} \left( -(-1)x + b \right) = \lim_{x \to -\infty} \left( x + b \right) \] For this limit to be zero, we need: \[ b = -\infty \text{ (which is not a valid constant)} \] So, we need to check for the next condition. ### Step 6: Find \( b \) when \( a = -1 \) We have: \[ L = \lim_{x \to -\infty} \left( x + b \right) = 0 \implies b = -1 \] ### Final Result Thus, we have found: \[ (a, b) = (-1, -1) \] ### Conclusion The values of \( a \) and \( b \) that satisfy the limit condition are: \[ \boxed{(-1, -1)} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x->\infty)sqrt(x^(2)+1)/(x+1)

lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0, then a+b=

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

If lim_(x to infty) ((x^(2)+x+1)/(x+1)-ax -b)=4 then