Home
Class 12
MATHS
The value of lim(x to infty) ((x^(2) sin...

The value of `lim_(x to infty) ((x^(2) sin (1//x) -x)/(1-|x|))` is:

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \frac{x^2 \sin\left(\frac{1}{x}\right) - x}{1 - |x|} \), we will follow these steps: ### Step 1: Analyze the expression As \( x \) approaches infinity, we need to simplify the expression. Notice that \( |x| = x \) when \( x \) is positive. Therefore, the expression can be rewritten as: \[ \lim_{x \to \infty} \frac{x^2 \sin\left(\frac{1}{x}\right) - x}{1 - x} \] ### Step 2: Simplify the numerator We can factor out \( x \) from the numerator: \[ = \lim_{x \to \infty} \frac{x \left(x \sin\left(\frac{1}{x}\right) - 1\right)}{1 - x} \] ### Step 3: Evaluate \( \sin\left(\frac{1}{x}\right) \) As \( x \to \infty \), \( \frac{1}{x} \to 0 \). We know that \( \sin(t) \approx t \) when \( t \) is close to 0. Therefore: \[ \sin\left(\frac{1}{x}\right) \approx \frac{1}{x} \] Thus, we can substitute this approximation into our limit: \[ x \sin\left(\frac{1}{x}\right) \approx x \cdot \frac{1}{x} = 1 \] ### Step 4: Substitute back into the limit Now substituting back into our limit gives: \[ = \lim_{x \to \infty} \frac{x(1 - 1)}{1 - x} = \lim_{x \to \infty} \frac{x \cdot 0}{1 - x} = \lim_{x \to \infty} \frac{0}{1 - x} = 0 \] ### Conclusion Thus, the value of the limit is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarroo) {(x^2sin((1)/(x))-x)/(1-|x|)} , is

lim_(x to - infty) [((x^(4) sin (1/x) + x^(2)))/((1+|x|^(3)))]=...

The value of lim_(xrarroo)(x^(3)sin(1//x)-2x^(2))/(1+3x^(2)) is __________

The value of lim_(xrarr oo) {(x^4sin((1)/(x))+x^2)/(1+|x^3|)} is