Home
Class 12
MATHS
If lim(x to 0)(x(1+ a cos x)- b sin x)/x...

If `lim_(x to 0)(x(1+ a cos x)- b sin x)/x^(3)=1`, then a,b are

A

`1/2, -3/2`

B

`5/2, 3/2`

C

`-5/2, -3/2`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{x(1 + a \cos x - b \sin x)}{x^3} = 1, \] we will first analyze the expression inside the limit and use Taylor series expansions for \(\cos x\) and \(\sin x\). ### Step 1: Expand \(\cos x\) and \(\sin x\) Using Taylor series expansion around \(x = 0\): \[ \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + O(x^6), \] \[ \sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7). \] ### Step 2: Substitute the expansions into the limit expression Substituting these expansions into the limit expression, we get: \[ 1 + a \cos x - b \sin x = 1 + a \left(1 - \frac{x^2}{2} + O(x^4)\right) - b \left(x - \frac{x^3}{6} + O(x^5)\right). \] This simplifies to: \[ 1 + a - b x - \frac{a x^2}{2} + \frac{b x^3}{6} + O(x^4). \] ### Step 3: Multiply by \(x\) and simplify Now, we multiply the entire expression by \(x\): \[ x(1 + a - b x - \frac{a x^2}{2} + \frac{b x^3}{6} + O(x^4)) = x(1 + a) - b x^2 - \frac{a x^3}{2} + \frac{b x^4}{6} + O(x^5). \] ### Step 4: Divide by \(x^3\) Now, we divide the entire expression by \(x^3\): \[ \frac{x(1 + a) - b x^2 - \frac{a x^3}{2} + O(x^4)}{x^3} = \frac{(1 + a)}{x^2} - \frac{b}{x} - \frac{a}{2} + O(1). \] ### Step 5: Analyze the limit as \(x \to 0\) As \(x \to 0\), the terms \(\frac{(1 + a)}{x^2}\) and \(-\frac{b}{x}\) will dominate unless they are set to zero. For the limit to equal 1, we need: 1. The coefficient of \(\frac{1}{x^2}\) to be zero: \[ 1 + a = 0 \implies a = -1. \] 2. The coefficient of \(\frac{1}{x}\) to be zero: \[ -b = 0 \implies b = 0. \] ### Step 6: Substitute values back into the limit Now substituting \(a = -1\) and \(b = 0\) back into the limit expression: \[ \lim_{x \to 0} \left(-\frac{1}{2} + O(1)\right) = 1. \] ### Conclusion Thus, the values of \(a\) and \(b\) are: \[ \boxed{(-1, 0)}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(x(1+a cos x)-b sin x)/(x^(3))=1 then

If lim_(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1 , then the value of ab is euqal to

lim_(x rarr0)(x(a+b cos x)-c sin x)/(x^(5))=1

Let f(x) be a function such that lim_(x rarr0)(f(x))/(x)=1 and lim_(x rarr0)(x(1+a cos x)-b sin x)/({f(x)^(3)})=1 ,then b-3a is equals to

Find the value of a and b if lim_(x rarr0)(x(1+a cos x)-b sin x)/(x^(3))=1

The value of ordered pair (a,b) such that lim _(xto0) (x (1+ a cos x ) -b sin x )/( x ^(3))=1, is:

lim_(x rarr0)(ax+x cos x)/(b sin x)

lim_(x rarr0)(ax+x cos x)/(b sin x)