Home
Class 12
MATHS
Let L= lim(x to 0)(a- sqrt(a^(2)-x^(2))-...

Let `L= lim_(x to 0)(a- sqrt(a^(2)-x^(2))-x^(2)/4)/x^(4), a gt 0`. If L is finite, then

A

a=2

B

a=1

C

`L = 1/64`

D

`L =1/32`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( L = \lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2} - \frac{x^2}{4}}{x^4} \) where \( a > 0 \) and determine the conditions under which \( L \) is finite, we will follow these steps: ### Step 1: Identify the limit form As \( x \to 0 \), both the numerator and denominator approach 0, resulting in the indeterminate form \( \frac{0}{0} \). This indicates that we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator separately. 1. **Differentiate the numerator**: \[ \text{Numerator: } a - \sqrt{a^2 - x^2} - \frac{x^2}{4} \] The derivative is: \[ 0 - \frac{1}{2\sqrt{a^2 - x^2}}(-2x) - \frac{1}{2}x = \frac{x}{\sqrt{a^2 - x^2}} - \frac{x}{2} \] Thus, the derivative of the numerator is: \[ \frac{x}{\sqrt{a^2 - x^2}} - \frac{x}{2} \] 2. **Differentiate the denominator**: \[ \text{Denominator: } x^4 \implies 4x^3 \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ L = \lim_{x \to 0} \frac{\frac{x}{\sqrt{a^2 - x^2}} - \frac{x}{2}}{4x^3} \] ### Step 4: Simplify the expression Factor out \( x \) from the numerator: \[ L = \lim_{x \to 0} \frac{x\left(\frac{1}{\sqrt{a^2 - x^2}} - \frac{1}{2}\right)}{4x^3} = \lim_{x \to 0} \frac{\frac{1}{\sqrt{a^2 - x^2}} - \frac{1}{2}}{4x^2} \] ### Step 5: Apply L'Hôpital's Rule again As \( x \to 0 \), we still have the form \( \frac{0}{0} \). We apply L'Hôpital's Rule again. 1. **Differentiate the new numerator**: \[ \text{Numerator: } \frac{1}{\sqrt{a^2 - x^2}} - \frac{1}{2} \] The derivative is: \[ -\frac{1}{2}(a^2 - x^2)^{-3/2}(-2x) = \frac{x}{(a^2 - x^2)^{3/2}} \] 2. **Differentiate the denominator**: \[ \text{Denominator: } 4x^2 \implies 8x \] ### Step 6: Rewrite the limit again Now we have: \[ L = \lim_{x \to 0} \frac{\frac{x}{(a^2 - x^2)^{3/2}}}{8x} = \lim_{x \to 0} \frac{1}{8(a^2 - x^2)^{3/2}} \] ### Step 7: Evaluate the limit Substituting \( x = 0 \): \[ L = \frac{1}{8(a^2)^{3/2}} = \frac{1}{8a^3} \] ### Step 8: Determine conditions for finiteness For \( L \) to be finite, \( a \) must be greater than 0, which is already given in the problem. ### Conclusion Thus, the limit \( L \) is finite if \( a > 0 \), and the value of \( L \) is: \[ L = \frac{1}{8a^3} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Let L=lim_(x rarr0)(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>0 .If L is finite,then (a)a=2( b) a=1(c)L=(1)/(64) (d) L=(1)/(32)

Let L=lim_(xrarr0)(b-sqrt(b^(2)+x^(2))-(x^(2))/(4))/(x^(4)), b gt 0 . If L is finite, then

Let L=lim_(x rarr0)(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>0. If L

Let L=(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>=0 if L is finite then (1)/(8L)

lim_(x rarr0)(sqrt(4-x^(2))-2)/(x^(2))

Find lim_(x rarr0)(2-sqrt(4-x^(2)))/(x^(2))

lim_(x rarr0)(sqrt(x^(2)+4)-2)/(x^(2))

Let L= lim_(x->0) (a-(a^3-x^3)^(1//3) - x^3/108)/(x^6); a>0 If L is finite, then L is

lim_(x rarr0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))