Home
Class 12
MATHS
lim(x to 0) [1/x-1/x^(2) log (1+x)] =...

`lim_(x to 0) [1/x-1/x^(2) log (1+x)]` =

A

1

B

`1//2`

C

`-1`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \left( \frac{1}{x} - \frac{1}{x^2} \log(1+x) \right), \] we will first expand \(\log(1+x)\) using its Taylor series expansion around \(x = 0\): \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] Now substituting this expansion into our limit expression: \[ \lim_{x \to 0} \left( \frac{1}{x} - \frac{1}{x^2} \left( x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots \right) \right) \] Distributing \(-\frac{1}{x^2}\): \[ = \lim_{x \to 0} \left( \frac{1}{x} - \frac{x}{x^2} + \frac{1}{2} - \frac{x}{3} + \ldots \right) \] This simplifies to: \[ = \lim_{x \to 0} \left( \frac{1}{x} - \frac{1}{x} + \frac{1}{2} - \frac{x}{3} + \ldots \right) \] Notice that the \(\frac{1}{x}\) terms cancel out: \[ = \lim_{x \to 0} \left( \frac{1}{2} - \frac{x}{3} + \ldots \right) \] As \(x\) approaches \(0\), all terms involving \(x\) will vanish: \[ = \frac{1}{2} \] Thus, the limit evaluates to: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)[1/x-(log(1+x))/x^(2)]

lim_(x rarr0)[(1)/(x)-(1)/(x^(2))log(1+x)]

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-1)/(log(1+x)) .

(i) lim_(x to 0) (a^(x) - 1)/(log_(a)(1 + x)), a gt 0 (ii) lim__(x to 0) (In (X + a)- In a)/(e^(2x) - 1) (ii) lim_(x to (pi)/(4)) (In(tanx))/(1 - cotx)

Find the value of |(lim_( x to 1) (x^x-1)/(x log x )) /( lim_( xto0) (log (1-3x))/x)|

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(x to 0)(ln(1+x))/(x^(2))+(x-1)/(x)=

Use the formula lim_(x to 0 ) (a^(x) - 1) / x log_(e) a , to find lim_( x to 0) (2^(x)-1)/((1+x)^(1//2) - 1) .

lim_ (x rarr oo) {xx ^ (2) * log (1+ (1) / (x))}