Home
Class 12
MATHS
The value of lim(x to 0) (cos(sin x) - c...

The value of `lim_(x to 0) (cos(sin x) - cos x)/x^(4)` is equal to:

A

`1/5`

B

`1/6`

C

`1/4`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ L = \lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4}, \] we can use Taylor series expansions for \(\cos(\sin x)\) and \(\cos x\) around \(x = 0\). ### Step 1: Taylor Series Expansion The Taylor series expansion of \(\cos x\) around \(0\) is: \[ \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + O(x^8). \] For \(\sin x\), the Taylor series expansion is: \[ \sin x = x - \frac{x^3}{6} + O(x^5). \] ### Step 2: Substitute \(\sin x\) into \(\cos(\sin x)\) Now, substituting \(\sin x\) into the expansion of \(\cos\): \[ \cos(\sin x) = \cos\left(x - \frac{x^3}{6} + O(x^5)\right). \] Using the Taylor series for \(\cos\): \[ \cos(\sin x) = 1 - \frac{\left(x - \frac{x^3}{6}\right)^2}{2} + O\left(\left(x - \frac{x^3}{6}\right)^4\right). \] Calculating \(\left(x - \frac{x^3}{6}\right)^2\): \[ \left(x - \frac{x^3}{6}\right)^2 = x^2 - \frac{x^4}{3} + O(x^6). \] Thus, \[ \cos(\sin x) = 1 - \frac{x^2 - \frac{x^4}{3}}{2} + O(x^4) = 1 - \frac{x^2}{2} + \frac{x^4}{6} + O(x^4). \] ### Step 3: Calculate \(\cos(\sin x) - \cos x\) Now we compute: \[ \cos(\sin x) - \cos x = \left(1 - \frac{x^2}{2} + \frac{x^4}{6}\right) - \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right). \] This simplifies to: \[ \cos(\sin x) - \cos x = \frac{x^4}{6} - \frac{x^4}{24} = \frac{4x^4 - x^4}{24} = \frac{3x^4}{24} = \frac{x^4}{8}. \] ### Step 4: Substitute back into the limit Now substitute this back into the limit: \[ L = \lim_{x \to 0} \frac{\frac{x^4}{8}}{x^4} = \lim_{x \to 0} \frac{1}{8} = \frac{1}{8}. \] ### Final Result Thus, the value of the limit is: \[ \boxed{\frac{1}{8}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

the value of lim_(x rarr0)(cos(sin x)-cos x)/(x^(4)) is equal to:

lim_(x rarr0)(cos(tan x)-cos x)/(x^(4)) is equal to :

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

lim_(x to 0) (cos (sin x) - 1)/(x^2) equals :

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

lim_(x to 0) ((1-cos 2x)(3+cos x))/(x tan 4x) is equal to

lim_(x to 0) (sin x + cos 3x)^(2//x) =