Home
Class 12
MATHS
lim(x to pi//2) (2x -pi)/(cos x)=...

`lim_(x to pi//2) (2x -pi)/(cos x)`=

A

1

B

2

C

`-2`

D

`0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{2x - \pi}{\cos x} \), we can follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{2} \) First, we substitute \( x = \frac{\pi}{2} \) into the expression: \[ \frac{2\left(\frac{\pi}{2}\right) - \pi}{\cos\left(\frac{\pi}{2}\right)} = \frac{\pi - \pi}{0} = \frac{0}{0} \] Since we get an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of the numerator \( 2x - \pi \) is \( 2 \). - The derivative of the denominator \( \cos x \) is \( -\sin x \). Thus, we rewrite the limit as: \[ \lim_{x \to \frac{\pi}{2}} \frac{2}{-\sin x} \] ### Step 3: Substitute \( x = \frac{\pi}{2} \) again Now we substitute \( x = \frac{\pi}{2} \) into the new expression: \[ \frac{2}{-\sin\left(\frac{\pi}{2}\right)} = \frac{2}{-1} = -2 \] ### Final Result Therefore, the limit is: \[ \lim_{x \to \frac{\pi}{2}} \frac{2x - \pi}{\cos x} = -2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Write the value of (lim)_(x rarr pi/2)(2x-pi)/(cos x)

lim_ (x rarr pi/2) (2x-pi)/cos x is equal to

lim _(x to (pi)/(2)) (cos x ) ^(cos x ) is :

If [.] denotes the greatest integer function , then lim_(xrarr pi//2)[(x-(pi)/(2))/(cos x)] is equal to.

lim_( x to (pi/(2)) (tan2x)/(x-(pi)/(2))

(i) lim_(x to (pi)/(2)) (1+cos 2x)/((pi-2x)^(2)) (ii) lim_( x to 0) (1-cos x.sqrt(cos 2x))/(x^(2)) (iii) lim_(thetararr(pi)/(6)) (sin(theta-(pi)/(6)))/(sqrt(3)-2 cos theta)

lim_(x rarr pi/2)((cos x)^(cos x)+(sec x)^(cos x)) is equal to