Home
Class 12
MATHS
lim(theta to pi//2) (sec theta - tan the...

`lim_(theta to pi//2) (sec theta - tan theta) =`

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{\theta \to \frac{\pi}{2}} (\sec \theta - \tan \theta) \), we will follow these steps: ### Step 1: Substitute the limit We begin by substituting \( \theta = \frac{\pi}{2} \) into the expression: \[ \sec\left(\frac{\pi}{2}\right) - \tan\left(\frac{\pi}{2}\right) \] Calculating these values, we find: \[ \sec\left(\frac{\pi}{2}\right) = \frac{1}{\cos\left(\frac{\pi}{2}\right)} = \frac{1}{0} \quad (\text{undefined, approaches } \infty) \] \[ \tan\left(\frac{\pi}{2}\right) = \frac{\sin\left(\frac{\pi}{2}\right)}{\cos\left(\frac{\pi}{2}\right)} = \frac{1}{0} \quad (\text{undefined, approaches } \infty) \] Thus, we have: \[ \sec\left(\frac{\pi}{2}\right) - \tan\left(\frac{\pi}{2}\right) = \infty - \infty \quad (\text{indeterminate form}) \] ### Step 2: Rewrite the expression To resolve the indeterminate form, we can rewrite the expression: \[ \sec \theta - \tan \theta = \frac{1 - \sin \theta}{\cos \theta} \] This can be rewritten as: \[ \frac{\sec^2 \theta - \tan^2 \theta}{\sec \theta + \tan \theta} \] Using the identity \( \sec^2 \theta - \tan^2 \theta = 1 \): \[ \sec \theta - \tan \theta = \frac{1}{\sec \theta + \tan \theta} \] ### Step 3: Substitute again Now, we substitute \( \theta \to \frac{\pi}{2} \): \[ \sec\left(\frac{\pi}{2}\right) + \tan\left(\frac{\pi}{2}\right) = \infty + \infty = \infty \] Thus, we have: \[ \lim_{\theta \to \frac{\pi}{2}} (\sec \theta - \tan \theta) = \lim_{\theta \to \frac{\pi}{2}} \frac{1}{\sec \theta + \tan \theta} = \frac{1}{\infty} = 0 \] ### Conclusion Therefore, the limit is: \[ \lim_{\theta \to \frac{\pi}{2}} (\sec \theta - \tan \theta) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(theta rarr pi/2)(sec theta-tan theta)/(pi-2 theta)

The value of lim_(theta rarr(pi)/(2))(sec theta-tan theta) equals

lim_(theta rarr(pi)/(2))(sec theta-tan theta)/(pi-2 theta)

If : sec theta * tan theta (sectheta + tan theta) + (sec theta - tan theta) = sec^(n) theta + tan^(n) theta, "then" : n = A)1 B)2 C)3 D)4

Prove each of the following identities : (i) ("cosec"theta + cot theta )/("cosec"theta - cot theta ) = ("cosec" theta + cot theta)^(2) = 1+2cot^(2) theta + 2"cosec" theta cot theta (ii) (sec theta + tan theta ) /( sec theta - tan theta) =(sec theta + tan theta )^(2) = 1+ 2tan^(2) theta + 2 sec theta tan theta

the value of lim_(x rarr(pi)/(2))(sec theta-tan theta)

Prove that: sqrt((1-sintheta)/(1+sintheta))= sec theta- tan theta when (-pi/2) < theta < pi/2 and -sec theta+tan theta when pi/2< theta< (3pi)/2

Evaluate the following limits : lim_(theta to pi/2)(tan2theta)/(theta-pi/2)

If sec theta + tan theta = 12.5 , then sec theta - tan theta = ?