Home
Class 12
MATHS
lim(x to pi//2) tan x log(e) sin x=...

`lim_(x to pi//2) tan x log_(e) sin x=`

A

1

B

`-1`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \tan x \log_e \sin x \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to \frac{\pi}{2}} \tan x \log_e \sin x \] We know that \( \tan x = \frac{\sin x}{\cos x} \), so we can rewrite the limit as: \[ \lim_{x \to \frac{\pi}{2}} \frac{\log_e \sin x}{\cot x} \] ### Step 2: Evaluate the limit Now, we evaluate the limit by substituting \( x = \frac{\pi}{2} \): - As \( x \to \frac{\pi}{2} \), \( \sin x \to 1 \) and thus \( \log_e \sin x \to \log_e 1 = 0 \). - Also, \( \cot x = \frac{\cos x}{\sin x} \) approaches \( \cot \frac{\pi}{2} = 0 \). This gives us the indeterminate form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of the numerator \( \log_e \sin x \) is: \[ \frac{d}{dx}(\log_e \sin x) = \frac{1}{\sin x} \cdot \cos x = \frac{\cos x}{\sin x} = \cot x \] - The derivative of the denominator \( \cot x \) is: \[ \frac{d}{dx}(\cot x) = -\csc^2 x \] Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{\cot x}{-\csc^2 x} \] ### Step 4: Simplify the limit Substituting the derivatives back into the limit gives: \[ \lim_{x \to \frac{\pi}{2}} \frac{\cot x}{-\csc^2 x} = \lim_{x \to \frac{\pi}{2}} \frac{\cos x / \sin x}{-\frac{1}{\sin^2 x}} = \lim_{x \to \frac{\pi}{2}} -\cos x \sin x \] ### Step 5: Evaluate the limit As \( x \to \frac{\pi}{2} \): - \( \cos x \to 0 \) - \( \sin x \to 1 \) Thus: \[ \lim_{x \to \frac{\pi}{2}} -\cos x \sin x = -0 \cdot 1 = 0 \] ### Final Result The final result is: \[ \lim_{x \to \frac{\pi}{2}} \tan x \log_e \sin x = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr pi/2) tanx log_e sinx=

lim_ (x rarr (pi) / (2)) tan x log_ (e) sin x =

lim_ (x rarr (pi) / (2)) tan x log sin x

Value of lim_(x rarr pi/2)tan x*ln sin x is

The value of lim_(x to pi) (tan(picos^2 x))/(sin^2 x) is equal to

Match the following : {:("Column-I" , " Column - II"), ("(A)" lim_(x to pi/4)(sin2x)^(tan^(2)2x), "(p)" 1/2),("(B)" lim_(x to oo) ((2x-1)/(2x+1))^(x) , "(q)"e^(-1/2)),("(C)" lim_(x to pi/2)(tanx)^(tan 2x) , "(r)" e^(-1)),("(D)" lim_(x to pi/4) tan2x tan(pi/4-x), "(s)" 1):}

(i) lim_(x to 0) (a^(x) - 1)/(log_(a)(1 + x)), a gt 0 (ii) lim__(x to 0) (In (X + a)- In a)/(e^(2x) - 1) (ii) lim_(x to (pi)/(4)) (In(tanx))/(1 - cotx)

lim_(x=(pi)/(2))(sin x)^(tan x)