Home
Class 12
MATHS
lim(x to pi//2) [x tan x -(pi/2) sec x]=...

`lim_(x to pi//2) [x tan x -(pi/2) sec x]`=

A

1

B

`-1`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \left[ x \tan x - \frac{\pi}{2} \sec x \right] \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting \( \tan x \) and \( \sec x \) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x} \quad \text{and} \quad \sec x = \frac{1}{\cos x} \] Thus, we can rewrite the limit as: \[ \lim_{x \to \frac{\pi}{2}} \left[ x \frac{\sin x}{\cos x} - \frac{\pi}{2} \frac{1}{\cos x} \right] \] ### Step 2: Combine the terms We can combine the terms over a common denominator: \[ \lim_{x \to \frac{\pi}{2}} \left[ \frac{x \sin x - \frac{\pi}{2}}{\cos x} \right] \] ### Step 3: Evaluate the limit Substituting \( x = \frac{\pi}{2} \): - \( \sin\left(\frac{\pi}{2}\right) = 1 \) - \( \cos\left(\frac{\pi}{2}\right) = 0 \) This gives us the form \( \frac{0}{0} \), which is indeterminate. Therefore, we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - Derivative of the numerator \( x \sin x - \frac{\pi}{2} \) is: \[ \frac{d}{dx}(x \sin x) = \sin x + x \cos x \] - Derivative of the denominator \( \cos x \) is: \[ \frac{d}{dx}(\cos x) = -\sin x \] Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{\sin x + x \cos x}{-\sin x} \] ### Step 5: Substitute \( x = \frac{\pi}{2} \) again Substituting \( x = \frac{\pi}{2} \): - \( \sin\left(\frac{\pi}{2}\right) = 1 \) - \( \cos\left(\frac{\pi}{2}\right) = 0 \) Thus, we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{1 + \frac{\pi}{2} \cdot 0}{-1} = \frac{1}{-1} = -1 \] ### Final Answer The limit is: \[ \lim_{x \to \frac{\pi}{2}} \left[ x \tan x - \frac{\pi}{2} \sec x \right] = -1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr(pi)/(2))[x tan x-((pi)/(2))sec x] is equal to

lim_ (x rarr (pi) / (2)) (2x tan x-pi sec x)

lim_( x to (pi/(2)) (tan2x)/(x-(pi)/(2))

lim_(x rarr pi)sgn[tan x]

lim _ ( x to pi//2 ) ( sec x - tan x ) is equal to

Ascertain the existence of the following limits : lim_(x to pi//2) (tan x)/(sec x)

lim_ (x rarr (pi) / (2)) (2x tan x- (pi) / (cos x))