Home
Class 12
MATHS
f(x) is a differentiable functions give...

`f(x)` is a differentiable functions given `f'(1) = 4, f'(2) = 6`, where `f'(c )` means the derivatives of function at x = c, then
`lim_(h to 0) (f(2+2h + h^(2))-f(2))/(f(1+h-h^(2))-f(1))`

A

not exist

B

`-3`

C

3

D

`3//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{h \to 0} \frac{f(2 + 2h + h^2) - f(2)}{f(1 + h - h^2) - f(1)}, \] we start by recognizing that as \( h \to 0 \), both the numerator and the denominator approach 0, leading to the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \( \frac{0}{0} \), we can take the derivative of the numerator and the derivative of the denominator. ### Step 1: Differentiate the Numerator The numerator is \( f(2 + 2h + h^2) - f(2) \). We differentiate it with respect to \( h \): Using the chain rule, we have: \[ \frac{d}{dh}[f(2 + 2h + h^2)] = f'(2 + 2h + h^2) \cdot \frac{d}{dh}(2 + 2h + h^2) = f'(2 + 2h + h^2) \cdot (2 + 2h). \] ### Step 2: Differentiate the Denominator The denominator is \( f(1 + h - h^2) - f(1) \). We differentiate it similarly: Using the chain rule again, we have: \[ \frac{d}{dh}[f(1 + h - h^2)] = f'(1 + h - h^2) \cdot \frac{d}{dh}(1 + h - h^2) = f'(1 + h - h^2) \cdot (1 - 2h). \] ### Step 3: Apply L'Hôpital's Rule Now we apply L'Hôpital's Rule: \[ \lim_{h \to 0} \frac{f(2 + 2h + h^2) - f(2)}{f(1 + h - h^2) - f(1)} = \lim_{h \to 0} \frac{f'(2 + 2h + h^2) \cdot (2 + 2h)}{f'(1 + h - h^2) \cdot (1 - 2h)}. \] ### Step 4: Evaluate the Limit As \( h \to 0 \): - \( 2 + 2h \to 2 \) - \( 1 + h - h^2 \to 1 \) - \( f'(2 + 2h + h^2) \to f'(2) = 6 \) - \( f'(1 + h - h^2) \to f'(1) = 4 \) Thus, we have: \[ \lim_{h \to 0} \frac{f'(2 + 2h + h^2) \cdot (2 + 2h)}{f'(1 + h - h^2) \cdot (1 - 2h)} = \frac{f'(2) \cdot 2}{f'(1) \cdot 1} = \frac{6 \cdot 2}{4 \cdot 1} = \frac{12}{4} = 3. \] ### Final Answer Therefore, the limit is \[ \boxed{3}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

If f '(2) =1, then lim _( h to 0 ) (f (2+ h ^(2)) -f ( 2- h ^(2)))/( 2h ^(2)) is equal to

If f(x) is differentiable EE f'(1)=4,f'(2)=6 then lim_(h rarr0)(f(3h+2+h^(3))-f(2))/(f(2h-2h^(2)+1)-f(1))=

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?

Given that f'(2)=6 and f'(1)=4 then {:("Lim"),(hrarr0):}(f(2h+2+h^(2))-f(2))/(f(h-h^(2)+1)-f(1)) is :

If f is a differentiable function of x, then lim_(h rarr0)([f(x+n)]^(2)-[f(x)]^(2))/(2h)

If f(x) is a differentiable function of x then lim_(h rarr0)(f(x+3h)-f(x-2h))/(h)=

If f(x) is derivable at x=5, f'(5)=4 , then evaluate lim_(hto0)(f(5+h^(3))-f(5-h^(3)))/(2h^(3)