Home
Class 12
MATHS
If G(x) = - sqrt(25 -x^(2)), then lim(x ...

If `G(x) = - sqrt(25 -x^(2))`, then `lim_(x to 1) (G(x)-G(1))/(x-1)` has the value of:

A

`1//24`

B

`1//5`

C

`-sqrt(24)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the value of \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} \] where \( G(x) = -\sqrt{25 - x^2} \). ### Step 1: Calculate \( G(1) \) First, we need to evaluate \( G(1) \): \[ G(1) = -\sqrt{25 - 1^2} = -\sqrt{25 - 1} = -\sqrt{24} \] ### Step 2: Set up the limit expression Now we can substitute \( G(1) \) into our limit expression: \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} = \lim_{x \to 1} \frac{-\sqrt{25 - x^2} + \sqrt{24}}{x - 1} \] ### Step 3: Check for indeterminate form If we directly substitute \( x = 1 \) into the limit, we get: \[ \frac{-\sqrt{25 - 1^2} + \sqrt{24}}{1 - 1} = \frac{-\sqrt{24} + \sqrt{24}}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: 1. Differentiate the numerator \( G(x) - G(1) \): - \( G'(x) = -\frac{d}{dx}(\sqrt{25 - x^2}) = -\frac{1}{2\sqrt{25 - x^2}} \cdot (-2x) = \frac{x}{\sqrt{25 - x^2}} \) 2. Differentiate the denominator \( x - 1 \): - The derivative is simply \( 1 \). Now we can rewrite the limit: \[ \lim_{x \to 1} \frac{G'(x)}{1} = G'(1) \] ### Step 5: Calculate \( G'(1) \) Now we evaluate \( G'(1) \): \[ G'(1) = \frac{1}{\sqrt{25 - 1^2}} = \frac{1}{\sqrt{24}} = \frac{1}{2\sqrt{6}} \] ### Final Answer Thus, the value of the limit is: \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} = \frac{1}{2\sqrt{6}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE) |4 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

If G(x)=-sqrt(25-x) . Then lim_(xrarr1) (G(x)-G(1))/(x-1) has the value

Given that lim_(x to oo ) ((2+x^(2))/(1+x)-Ax-B)=3 If G(x)=sqrt(25-x^(2)) then what is lim_(xto1) (G(x)-G(1))/(x-1) equal to?

If G(x)=-sqrt(25-x^(2)) ,find the value of lim(x rarr1)(G(x)-G(1))/(x-1)

If G(x ) = - sqrt( 25-x^2) lim_( x - > 1 ) (G(x) - G(1 ) )/( x - 1 ) = 1/sqrt(A) then find A

If G(x)=-sqrt(25-x^(2)), then lim_(x rarr1)(G(x)-G(1))/(x-1)is (a) (1)/(24) (b) (1)/(5)(c)-sqrt(24) (d) none of these

f(x)=cot^(-1)((2x)/(1-x^(2))), g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x to a)(f(x)-f(a))/(g(x)-g(a)), a in (0, (1)/(2))

If f(x)={(3x-1),x>=1,(2x+3),x =2} then lim_(x rarr2)f(g(x))=

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2 is :